首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin is a highly conserved, ubiquitous cytoskeletal protein, which is essential for multiple cellular functions. Despite its small size (Mr = 42 000), unpolymerized forms of actin, as well as polymerized forms, exist primarily in the cytoplasm, excluded from the nucleus. Although spatial control of actin is crucially important, the molecular mechanisms ensuring the cytoplasmic localization of unpolymerized actin have not been revealed so far. In this paper we report that actin contains two leucine-rich type nuclear export signal (NES) sequences in the middle part of the molecule, which are both shown to be functional. Monomeric actin, when injected into the nucleus, was rapidly exported in a manner which was sensitive to leptomycin B (LMB), a specific inhibitor of NES-dependent nuclear export. LMB treatment of cells prevented nuclear exclusion of endogenous actin, inducing its nuclear accumulation. Furthermore, actin mutants with disrupted NESs accumulated in the nucleus. Expression of these NES-disrupted actin mutants, but not of wild-type actin, induced a decrease in the proliferative potential of the cell. These results reveal a novel molecular mechanism controlling the subcellular distribution of actin.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

3.
Insertion of T-cell line-tropic V3 and V4 loops from the HXB2 strain into the macrophage-tropic YU-2 envelope resulted in a virus with delayed infectivity for HUT78 and Jurkat cells compared with HXB2. Sequence analysis of viral DNA derived from long-term cultures of Jurkat cells revealed a specific mutation that changed a highly conserved Asn residue in the V1 loop of Env to an Asp residue (N-136-->D). Introduction of this mutation into clones containing a T-cell line-tropic V3 loop, either with or without a T-cell line-tropic V4 loop, resulted in viruses that replicated to high levels in Jurkat cells and peripheral blood lymphocytes. The Env proteins from these constructs were expressed with the vaccinia virus/T7 hybrid system and were found to be translated, processed, and cleaved and to bind to soluble CD4 similar to the wild-type HXB2 and YU-2 Env proteins. Env-mediated fusion with HeLa T4+ cells, however, was regulated by both the altered V1 loop and T-cell line-tropic V3 loop. These results suggest that subsequent to the initial gp120-CD4 binding event, a functional interaction can occur between the altered V1 loop and T-cell line-tropic V3 loop that results in infection of Jurkat cells and peripheral blood lymphocytes.  相似文献   

4.
This is a retrospective review of 29 patients (33 hands) who underwent a palmaris longus transfer because of severe thenar atrophy secondary to median nerve entrapment at the wrist. The mean follow-up was 17 months. Ninety-four percent of our patients were satisfied because their thumb function improved. Twenty-six of the patients had the transfer at the time of initial release of the carpal tunnel, and three patients had the transfer when the carpal tunnel was released a second time. The transfer helps with thumb palmar abduction, and the palmaris longus is an expendable muscle for transfer.  相似文献   

5.
6.
Using comparative molecular field analysis (CoMFA), a 3D-QSAR model was developed for 21 porphyrin derivatives which have anti-HIV-1 activity and bind to the V3 loop of the envelope glycoprotein gp120 of the human immunodeficiency virus type 1. A significant PLS cross-validated r2cv (0.590) was obtained, indicating that the model could be used as a predictive tool for further design of porphyrin analogs. The model revealed at least three important sites for favorable electrostatic interactions and indicated favorable and unfavorable steric interaction sites. It was found that the occurrence of at least three positively charged and several hydrophobic amino acid residues is highly conserved at fixed positions of gp120 V3 loop sequences. This may support the validity of the proposed model and the hypothesis that porphyrins containing anionic and hydrophobic groups may interact with some of the highly conserved positively charged and hydrophobic sites, respectively, of the V3 loop. These interactions may induce conformational changes in the gp120 envelope glycoprotein leading to inhibition of virus entry into cells and of syncytium formation (cell-to-cell fusion) and thus to inhibition of virus replication.  相似文献   

7.
A coding region homologous to the sequence for essential eukaryotic enzyme dUTPase has been identified in different genomic regions of several viral lineages. Unlike the nonprimate lentiviruses (caprine arthritis- encephalitis virus, equine infectious anemia virus, feline immunodeficiency virus, and visna virus), where dUTPase is integrated into the pol coding region, this enzyme has never been demonstrated to be present in the primate lentivirus genomes (human immunodeficiency virus type 1 [HIV-1], HIV-2, or the related simian immunodeficiency virus). A novel approach allowed us to identify a weak but significant sequence similarity between HIV-1 gp120 and the human dUTPase. This finding was then extended to all of the primate lentivirus lineages. Together with the recently reported fragmentary structural similarity between the V3 loop region and the Escherichia coli dUTPase (P. D. Kwong, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski, and W. A. Hendrickson, Nature 393:648-659, 1998), our results strongly suggest that an ancestral dUTPase gene has evolved into the present primate lentivirus CD4 and cytokine receptor interacting region of gp120.  相似文献   

8.
Cell-free human immunodeficiency virus type 1 (HIV-1) can be taken up and released by a monolayer of primary human gingival cells and remain infectious for CD4+ cells. Virus-sized latex particles covalently coated with purified native HIV-1 envelope glycoprotein gp120 are also transported through the primary epithelial cells. This process is significantly stimulated by increasing the intracellular cyclic AMP (cAMP) concentration. Inhibition experiments with mannan and alpha-methyl-mannopyranoside indicated that mannosyl groups are involved in the interaction between gp120 and gingival cells. An increase of cellular oligomannosyl receptors by incubation with the mannosidase inhibitor deoxymannojirimycin augmented transcellular transport of the gp120-coated particles. The results suggest that infectious HIV can penetrate gingival epithelia by a cAMP-dependent transport mechanism involving interaction of the lectin-like domain of gp120 and mannosyl residues on glycoproteins on the mucosal surface. Penetration of HIV could be inhibited by soluble glycoconjugates present in oral mucins.  相似文献   

9.
Fucosylated N-linked glycans are important constituents of membrane glycoproteins, owing to their significance as biologically active ligands for several selectins and their role in modulating protein conformation of viral glycoproteins. The human immunodeficiency virus type 1 (HIV-1) glycoprotein contains more than 30 different glycan structures but so far fucose was found associated solely with the innermost GlcNAc of N-linked glycans. In the present report we determined whether fucose units also were linked to the distal GlcNAc via alpha(1-3) or alpha(1-4) linkages in N-linked glycans of gp 120. [3H]-fucose labelled gp 120 was subjected to endoglycosidase F digestion, releasing diantennary complex type N-linked glycans, but leaving the inner polypeptide-bound carbohydrates, GlcNAc and possibly associated fucose units, intact. Gel filtration of the digested material revealed that [3H]-fucose label was released from gp 120 by this treatment, indicating presence of peripheral fucose units. Furthermore, [3H]-focuse label was also released by treatment of the labelled gp 120 with an alpha-L-fucosidase specifically removing fucose in alpha(1-3) and alpha(1-4) linkages. Altogether the results indicated presence of fucose units linked to peripheral GlcNAc of gp 120 N-linked glycans. We have earlier shown that other peripheral carbohydrate determinants, i.e. beta(1-4)-galactose on N-linked glycans, maintain a correct antigenic conformation of gp 120. Using a coupled ELISA system, where changes in antigenic behaviour of a viral glycoprotein were correlated to stepwise elimination of peripheral monosaccharides from N-linked glycans, we found that treatment of gp 120 with a pan-specific alpha-fucosidase as well as an enzyme specific for alpha(1-3)- or alpha(1-4)-linked fucose disclosed a hidden linear epitope situated in the gp 120 C2 region. The effects of the general fucosidase on epitope exposure was more prominent than those obtained with the enzyme with narrow specificity, suggesting that peripheral and inner fucose units co-operate in the maintenance of gp 120 conformation.  相似文献   

10.
Infection by human immunodeficiency virus type 1 (HIV-1) is often complicated by a variety of neurological abnormalities. The most common clinical syndrome, termed acquired immunodeficiency syndrome (AIDS) dementia complex, presents as a subcortical dementia with cognitive, motor, and behavioral disturbances and is unique to HIV-1 infection. The pathogenesis of this syndrome is poorly understood but is believed to involve interactions among virally infected macrophages/microglia, astrocytes, and neurons. In this study, we show that exposure of primary rat and human astrocytes to heat-activated HIV-1 virions, or to eukaryotically expressed HIV-1 and HIV-2 envelope glycoproteins (gp120) stimulates amiloride-sensitive Na+/H+ antiport, potassium conductance, and glutamate efflux. These effects are blocked specifically by amiloride, an inhibitor of Na+/H+ antiport and by the selective removal of gp120 with immobilized monoclonal antibody. As a result of modulation of astrocytic function by gp120, the ensuing neuronal depolarization and glutamate exposure could activate both voltage-gated and N-methyl-D-aspartate-regulated Ca2+ channels, leading to increases in intraneuronal Ca2+ and neuronal death. These findings implicate the astrocyte directly in the pathogenesis of AIDS dementia complex.  相似文献   

11.
The avidity of antibodies for antigens can be measured by determining what remains bound after exposing the antibody-antigen complex to a chaotropic agent such as urea. This method has been gaining popularity for assessing the immune response to the human immunodeficiency virus type 1 (HIV-1) surface glycoprotein gp120 (or its counterpart from simian immunodeficiency virus), during natural infection or after subunit vaccination. High-avidity antibodies have been considered to be a possible correlate of protection. We have examined the avidity assay to determine what it, in fact, measures. First, we studied the development of the anti-gp120 response in seroconverting individuals. Urea elution reduced the polyclonal anti-gp120 titers by 3- to 10-fold. After allowing for the consequent reduction in assay sensitivity, there was no obvious change in the rate of development of the high-avidity and unfractionated antibody responses. Furthermore, in the one individual who developed a strong autologous, virus-neutralizing response, the appearance of neutralizing antibodies and high-avidity antibodies did not coincide. Antibodies to the V3 loop, when present, comprised a major fraction of the polyclonal response that survives urea elution. We next examined the effect of urea elution on the binding to gp120 of a panel of monoclonal antibodies (MAbs). Urea treatment preferentially eluted MAbs to discontinuous rather than continuous epitopes, independent of their affinities. Furthermore, these patterns of epitope stability were unaltered by the presence of polyclonal anti-gp120 antibodies. As most broadly neutralizing anti-gp120 antibodies recognize discontinuous epitopes, this skewing effect must be taken into account when interpreting studies using polyclonal sera.  相似文献   

12.
The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex and typically recognize conserved or variable epitopes near the receptor-binding regions. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein has been shown to be extensively modified by N-linked glycosylation; however, the presence of O-linked carbohydrates on the glycoprotein has not been firmly established. We have found that enzymatic deglycosylation of the HIV-1 envelope glycoprotein with neuraminidase and O-glycosidase results in a decrease in the apparent molecular weight of the envelope glycoprotein. This result was observed in both vaccinia virus recombinant-derived envelope glycoproteins and glycoproteins derived from the IIIB, SG3, and HXB2, strains of HIV-1. The decrease in molecular weight was also observed when the envelope glycoprotein had been deglycosylated with N-glycanase F after treatment with neuraminidase and O-glycosidase, indicating that the decrease in apparent molecular weight was not attributable to the removal of N-linked carbohydrate. Treatment with neuraminidase, O-glycosidase, and N-glycanase F was found to be necessary to remove all radiolabel from [3H]glucosamine-labelled envelope glycoprotein, a result seen for both recombinant and HIV-1-derived envelope glycoprotein. [3H]glucosamine-labelled carbohydrates liberated by O-glycosidase treatment were separated by paper chromatography and were found to be of a size consistent with O-linked oligosaccharides. We, therefore, conclude that the HIV-1 envelope glycoprotein is modified by the addition of O-linked carbohydrates.  相似文献   

14.
The specific binding of antibodies to the V3 loop in sera from human immunodeficiency type 1 (HIV-1)-infected individuals was investigated. Different V3 structures were analyzed as full-length loops or by pepscan. Our data show that on full-length V3 loops, both variable regions on either side of the tip of the loop (GPGRAF) contribute to a common epitope for type-specific antibodies. Type-specific antibodies bound strongly and at high titers to native V3 loops but negligibly once the loop was denatured. In contrast to the type-specific, discontinuous epitope, the linear, conserved epitopes presented by the full-length V3 loop, the tip, the amino-terminal base, and the carboxy-terminal base were not accessible to serum antibody. When the V3 sequences were analyzed with linear peptides, antibodies bound preferentially to peptides containing the conserved GPGRAF sequence. Thus, two different specificities of V3-directed antibodies were detected in patient sera. Unlike group-specific antibodies directed against GPGRAF peptides, lack of type-specific antibodies directed against the discontinuous epitope was correlated with viral escape from autologous neutralization. Our data suggest that the full-length conformation of the V3 loop is accessible predominantly to highly type-specific antibodies present in sera from HIV-1-infected individuals. These antibodies are directed against discontinuous V3 epitopes, not against conserved linear V3 targets. The implications of these findings for viral escape and blockade of infection with V3-based vaccines are discussed.  相似文献   

15.
We show that infection of primary monocyte-derived macrophages (MDMs) and blood lymphocytes (PBLs) by human immunodeficiency virus type 1 (HIV-1) R5 strains, but not that of PBLs by X4 strain HIV-1LAI, is inhibited by beta-chemokines RANTES and MIP-1alpha. A biotinylated disulfide-bridged peptide mimicking the complete loop of clade B consensus V3 domain of gp120 (V3Cs), but not a biotinylated V3LAI peptide or a control beta-endorphin peptide of approximately the same molecular weight (MW), was found to bind specifically to MDM membrane proteins, in particular two proteins of 42 and 62 kDa migrating as sharp bands after electroblotting onto Immobilon, and this was specifically inhibited by anti-V3 antibodies. When biotinylated V3Cs was incubated with intact MDMs, which were then washed and lysed, and the resulting material was incubated with streptavidin-agarose beads and electroblotted onto Immobilon, fresh V3Cs also bound to proteins of the same molecular weight recovered in the V3Cs-interacting material. This binding was inhibited by anti-V3 antibodies, and no binding occurred with the control peptides. V3Cs also bound to soluble recombinant CD4, and CD4 monoclonal antibody Q4120 specifically recognized the V3Cs-interacting 62-kDa protein, which should thus correspond to CD4. Recombinant radiolabeled RANTES, MIP-1alpha, and MIP-1beta, but not IL-8, also bound to a 42-kDa protein on the membrane of MDMs as well as to the V3Cs-interacting 42-kDa protein, and excess unlabeled V3Cs inhibited such binding. This protein was also recognized by antibodies to CCR5, the RANTES/MIP-1alpha/MIP-1beta receptor. These data show that V3Cs binds to MDM membrane proteins that comprise CD4 and CCR5, and that multimolecular complexes involving at least gp120 V3, CD4, and CCR5 are formed on the surface of MDMs as part of V3-mediated postbinding events occurring during HIV-1 infection.  相似文献   

16.
Antibodies that neutralize primary isolates of human immunodeficiency virus type 1 (HIV-1) appear during HIV-1 infection but are difficult to elicit by immunization with current vaccine products comprised of monomeric forms of HIV-1 envelope glycoprotein gp120. The limited neutralizing antibody response generated by gp120 vaccine products could be due to the absence or inaccessibility of the relevant epitopes. To determine whether neutralizing antibodies from HIV-1-infected patients bind to epitopes accessible on monomeric gp120 and/or oligomeric gp140 (ogp140), purified total immunoglobulin from the sera of two HIV-1-infected patients as well as pooled HIV immune globulin were selectively depleted of antibodies which bound to immobilized gp120 or ogp140. After passage of each immunoglobulin preparation through the respective columns, antibody titers against gp120 and ogp140 were specifically reduced at least 128-fold. The gp120- and gp140-depleted antibody fraction from each serum displayed reduced neutralization activity against three primary and two T-cell line-adapted (TCLA) HIV-1 isolates. Significant residual neutralizing activity, however, persisted in the depleted sera, indicating additional neutralizing antibody specificities. gp120- and ogp140-specific antibodies eluted from each column neutralized both primary and TCLA viruses. These data demonstrate the presence and accessibility of epitopes on both monomeric gp120 and ogp140 that are specific for antibodies that are capable of neutralizing primary isolates of HIV-1. Thus, the difficulties associated with eliciting neutralizing antibodies by using current monomeric gp120 subunit vaccines may be related less to improper protein structure and more to ineffective immunogen formulation and/or presentation.  相似文献   

17.
Infection by some human immunodeficiency virus type 1 (HIV-1) isolates is enhanced by the binding of subneutralizing concentrations of soluble receptor, soluble CD4 (sCD4), or monoclonal antibodies directed against the viral envelope glycoproteins. In this work, we studied the abilities of different antibodies to mediate activation of the envelope glycoproteins of a primary HIV-1 isolate, YU2, and identified the regions of gp120 envelope glycoprotein contributing to activation. Binding of antibodies to a variety of epitopes on gp120, including the CD4 binding site, the third variable (V3) loop, and CD4-induced epitopes, enhanced the entry of viruses containing YU2 envelope glycoproteins. Fab fragments of antibodies directed against either the CD4 binding site or V3 loop also activated YU2 virus infection. The activation phenotype was conferred on the envelope glycoproteins of a laboratory-adapted HIV-1 isolate (HXBc2) by replacing the gp120 V3 loop or V1/V2 and V3 loops with those of the YU2 virus. Infection by the YU2 virus in the presence of activating antibodies remained inhibitable by macrophage inhibitory protein 1beta, indicating dependence on the CCR5 coreceptor on the target cells. Thus, antibody enhancement of YU2 entry involves neither Fc receptor binding nor envelope glycoprotein cross-linking, is determined by the same variable loops that dictate enhancement by sCD4, and probably proceeds by a process fundamentally similar to the receptor-activated virus entry pathway.  相似文献   

18.
The mechanism of CD4-mediated fusion via activated human immunodeficiency virus type 1 (HIV-1) gp41 and the biological significance of soluble CD4 (sCD4)-induced shedding of gp120 are poorly understood. The purpose of these investigations was to determine whether shedding of gp120 led to fusion activation or inactivation. BJAB cells (TF228.1.16) stably expressing HIV-1 envelope glycoproteins (the gp120-gp41 complex) were used to examine the effects of pH and temperature on sCD4-induced shedding of gp120 and on cell-to-cell fusion (syncytium formation) with CD4+ SupT1 cells. sCD4-induced shedding of gp120 was maximal at pH 4.5 to 5.5 and did not occur at pH 8.5. At physiologic pH, sCD4-induced shedding of gp120 occurred at 22, 37, and 40 degrees C but neither at 16 nor 4 degrees C. In contrast, syncytia formed at pH 8.5 (maximally at pH 7.5) but not at pH 4.5 to 5.5. At pH 7.5, syncytia formed at 37 and 40 degrees C but not at 22, 16, or 4 degrees C. Preincubation of cocultures of TF228.1.16 and SupT1 cells at 4, 16, or 22 degrees C before the shift to 37 degrees C resulted in similar, increased, or decreased syncytium formation, respectively, compared with the control. Furthermore, an activated intermediate of CD4-gp120-gp41 ternary complex may form at 16 degrees C; this intermediate rapidly executes fusion upon a shift to 37 degrees C but readily decays upon a shift to the shedding-permissive but fusion-nonpermissive temperature of 22 degrees C. These physicochemical data indicate that shedding of HIV-1 gp120 is not an integral step in the fusion cascade and that CD4 may inactivate the fusion complex in a process analogous to sCD4-induced shedding of gp120.  相似文献   

19.
The ability of CD8 T cells derived from human immunodeficiency virus (HIV)-infected patients to produce soluble HIV-suppressive factor(s) (HIV-SF) has been suggested as an important mechanism of control of HIV infection in vivo. The C-C chemokines RANTES, MIP-1 alpha and MIP-1 beta were recently identified as the major components of the HIV-SF produced by both immortalized and primary patient CD8 T cells. Whereas they potently inhibit infection by primary and macrophage-tropic HIV-1 isolates, T-cell line-adapted viral strains tend to be insensitive to their suppressive effects. Consistent with this discrepancy, two distinct chemokine receptors, namely, CXCR4 (ref. 7) and CCR5 (ref. 8), were recently identified as potential co-receptors for T-cell line-adapted and macrophage-tropic HIV-1 isolates, respectively. Here, we demonstrate that the third hypervariable domain of the gp 120 envelope glycoprotein is a critical determinant of the susceptibility of HIV-1 to chemokines. Moreover, we show that RANTES, MIP-1 alpha and MIP-1 beta block the entry of HIV-1 into cells and that their antiviral activity is independent of pertussis toxin-sensitive signal transduction pathways mediated by chemokine receptors. The ability of the chemokines to block the early steps of HIV infection could be exploited to develop novel therapeutic approaches for AIDS.  相似文献   

20.
nef genes from two laboratory grown human immunodeficiency virus type 1 (HIV-1) strains and from two proviruses that had not been propagated in vitro were introduced into CD4+ lymphoblastoid CEM cells. The stable expression of all four Nef proteins was associated with an almost complete abrogation of CD4 cell surface localization. The consequences of the presence of Nef on gp160 cleavage, gp120 surface localization, and envelope-induced cytopathic effect were examined in CEM cells in which the HIV-1 env gene was expressed from a vaccinia virus vector. The presence of Nef did not modify the processing of gp160 into its subunits but resulted in a significant decrease of cell surface levels of gp120, associated with a dramatic reduction of the fusion-mediated cell death. Surface levels of mutant envelope glycoproteins unable to bind CD4 were not altered in Nef-expressing cells, suggesting that the phenomenon was CD4 dependent. The intracellular accumulation of fully processed envelope glycoproteins could significantly delay the cytopathic effect associated with envelope surface expression in HIV-infected cells and may be relevant to the selective advantage associated with Nef during the in vivo infectious process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号