首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The durability properties of bonded lap shear joints made from an epoxy/dicyandiamide adhesive and hot-dipped galvanized (G2F) or electroplated-phosphated (EZ2) steel have been investigated. The degradation mechanisms have been studied after three accelerated ageing tests: the “cataplasme humide” (“C.H.T.”), immersion (“I.T.”), and salt spray (“S.S.T.”) tests. X-ray photoelectron spectroscopy (XPS) analysis of fracture surfaces after ageing have shown that anodic dissolution of the zinc-coating is responsible for debonding in all cases and that intergranular corrosion phenomena account for poorer performances of the hot-dipped galvanized substrate during “C.H.T.” and “I.T.” Silane coupling agents were successfully used as primers on both substrates to increase the hydrolytic stability of the metal/adhesive interface. XPS results indicate that both the interfacial dissolution of the phosphate coating of EZ2 and intergranular corrosion of G2F are delayed for silane-primed specimens. The observed improvements do not appear to depend on the nature of the silane coupling agents. Alkylsilanes have been found to perform as well as silanes having a group capable of reacting with the epoxy/dicyandiamide system.

Additional tests were carried out in view of the possible application of organosilane reagents as additives in corrosion-protective oils. Good durability properties have been obtained by priming the metal coupons with a standard oil/silane mixture prior to bonding.

When corrosion was the controlling degradation mechanism as is the case during the salt spray test, silane treated specimens did not generally perform better than control specimens.  相似文献   

2.
The durability properties of bonded lap shear joints made from an epoxy/dicyandiamide adhesive and hot-dipped galvanized (G2F) or electroplated-phosphated (EZ2) steel have been investigated. The degradation mechanisms have been studied after three accelerated ageing tests: the “cataplasme humide” (“C.H.T.”), immersion (“I.T.”), and salt spray (“S.S.T.”) tests. X-ray photoelectron spectroscopy (XPS) analysis of fracture surfaces after ageing have shown that anodic dissolution of the zinc-coating is responsible for debonding in all cases and that intergranular corrosion phenomena account for poorer performances of the hot-dipped galvanized substrate during “C.H.T.” and “I.T.” Silane coupling agents were successfully used as primers on both substrates to increase the hydrolytic stability of the metal/adhesive interface. XPS results indicate that both the interfacial dissolution of the phosphate coating of EZ2 and intergranular corrosion of G2F are delayed for silane-primed specimens. The observed improvements do not appear to depend on the nature of the silane coupling agents. Alkylsilanes have been found to perform as well as silanes having a group capable of reacting with the epoxy/dicyandiamide system.

Additional tests were carried out in view of the possible application of organosilane reagents as additives in corrosion-protective oils. Good durability properties have been obtained by priming the metal coupons with a standard oil/silane mixture prior to bonding.

When corrosion was the controlling degradation mechanism as is the case during the salt spray test, silane treated specimens did not generally perform better than control specimens.  相似文献   

3.
The durability properties of bonded lap shear joints made from an epoxy/dicyandiamide adhesive and zinc metal coupons have been investigated. The metal coupons were anodized in sodium hydroxide solutions before bonding. The influence of the anodizing conditions on the morphology and composition of the oxide layers has been studied using SEM and TEM imaging analyses as well as X-ray photoelectron spectroscopy. The hydrolytic stability of the bonded joints has been assessed by storing the joints in water at 70 °C or 90 °C for periods of time up to 5 weeks. Polypropylene has been used as a model adhesive to study the influence of mechanical interlocking effects on the performance of the bonded joints. Depending on the anodizing conditions, the improved durability properties have been attributed either to „mechanical interlocking effects“ or to the higher hydrolytic stability of the oxide layers generated during the anodizing treatment.

Some of the results gained from the anodization of zinc have been extrapolated to hot-dipped galvanized steel. Bonded joints made from hot-dipped galvanized coupons anodized under smooth conditions (2% NaOH) displayed residual shear strengths of up to 70% higher than specimens simply degreased after immersion test. The generation of stable oxide layers as well as the suppression of intergranular corrosion phenomena at the metal/adhesive interface can explain the improved durability properties.  相似文献   

4.
Because the structure and the chemical composition of the interface can have a large effect on the adhesion properties of polymeric materials to metallic surfaces, many investigations have concentrated on the study of the interphase region. However, the complexity of the materials often leads to the use of model compounds to mimic the interfacial reaction. We have presented a critical discussion of three different approaches which have been used to understand the adhesion mechanism at amine-cured epoxy/aluminium interfaces: i) fracture of “real world” joints; ii) deposition of model (amino-alcohol) molecules on “real world” substrates; i) deposition of model (amino-alcohol) molecules on clean, oxidised and hydroxylated Al (100) surfaces. We have shown that model compounds can adequately duplicate the interface chemistry observed in “real world” joints. However, a detailed understanding of the exact nature of the interactions and of the role of the different reactive sites can only be achieved through studies performed on a model surface under controlled ultrahigh vacuum conditions.  相似文献   

5.
The performance of two-part, amidoamine-cured epoxy adhesives on clean and oil-contaminated electrogalvanized steel (EGS) was studied using screening and lap shear tests. On exposure to boiling water, the cured epoxy adhesives with amidoamines having higher amine value delaminated from the clean and oil-contaminated EGS surfaces before those cured with amidoamines having low amine value. The results of X-ray photoelectron spectroscopy (XPS) showed that the adhesives cured with amidoamines having high amine value were unable to displace the oil from the EGS substrate. However, the durability and the strength of the adhesive bonds on the oiled EGS could be improved by adding proper amounts of silane or wetting agent to the adhesive. The preferential adsorption of amino curing agents occurred on the clean EGS surface, confirmed by XPS and reflection absorption infrared spectroscopy, and this decreased the durability of the bonds in boiling water. In addition, from XPS analyses of various specimens, different amounts of cured resins were detected in the adhesive/EGS interfacial regions which affecting the durability of the adhesive bonds. In addition, the amidoamine curing agents may form complexes on the EGS surface.  相似文献   

6.
The present study takes advantage of the ability of Fourier Transform Infrared Spectroscopy (FTIR) for the analysis of ultrathin organic films on metals. FTIR in the reflection mode (IRRAS) is used in order to study the interaction of ultrathin films of dicyandiamide (hardener of most one-pack epoxy resins) with various substrates, model ones such as gold or zinc and industrial ones such as steel and zinc-coated steels.

Pure zinc surfaces and, to a lesser extent, zinc-coated steels are shown to react with dicyandiamide after heating at 180°C, as evidenced by the frequency shift of the absorption band (at about 2200 cm-1) characteristic for nitrile groups. As real systems consist of thick layers of a fully formulated adhesive cured onto a metallic substrate, the direct investigation of such a buried interphase is no longer possible by FTIR and by most of the known spectroscopies. Some mechanically tested specimens are then analysed, after failure, by FTIR microspectrometry. The spectra obtained, corresponding to the fracture initiation zone which is about 100 μm in diameter, advocate for the presence of an ultrathin layer of modified polymer still covering the substrate.  相似文献   

7.
This paper presents the effects of immersion on the adhesion behavior in a polyamide-cured epoxy system immersed in sodium chloride electrolyte adjusted to three different pH values. The strength of lap shear joints was measured before and after exposure and after redrying. The failure locus was determined on a macroscopic and microscopic level. It was found that a large adhesion loss occurred upon immersion. Most of that loss was recovered upon redrying. All of the breaking force was recovered when the immersion fluid was distilled water. The locus of failure was primarily through the bulk of the adhesive before immersion. After immersion the failure was interfacial with a thin residue of polymer remaining on the metal surface. These results are discussed with respect to earlier work on the water absorption properties of the system.  相似文献   

8.
This paper presents the effects of immersion on the adhesion behavior in a polyamide-cured epoxy system immersed in sodium chloride electrolyte adjusted to three different pH values. The strength of lap shear joints was measured before and after exposure and after redrying. The failure locus was determined on a macroscopic and microscopic level. It was found that a large adhesion loss occurred upon immersion. Most of that loss was recovered upon redrying. All of the breaking force was recovered when the immersion fluid was distilled water. The locus of failure was primarily through the bulk of the adhesive before immersion. After immersion the failure was interfacial with a thin residue of polymer remaining on the metal surface. These results are discussed with respect to earlier work on the water absorption properties of the system.  相似文献   

9.
The molecular structure of interphases formed by curing an epoxy/4,4'-diaminodiphenylsulfone (DADPS) adhesive against rough silver substrates was determined using surface-enhanced Raman scattering (SERS) and x-ray photoelectron spectroscopy (XPS). SERS spectra obtained from the adhesive deposited onto silver island films were very similar to SERS spectra obtained from the DADPS curing agent spun onto silver island films, indicating that DADPS in the adhesive system segregated to the interphase and was preferentially adsorbed onto the silver substrate. Differences in the relative intensity of several bands in the normal Raman and SERS spectra of DADPS were observed. For example, the band near 1603 cm-1 was stronger in SERS spectra of DADPS than in normal Raman spectra. The band near 1150 cm-1 was weaker in SERS spectra of DADPS than in normal Raman spectra. These results implied that DADPS was adsorbed through one of the NH groups with an end-on conformation. Consistent results were also obtained from XPS spectra. C(ls) spectra of the adhesive and silver fracture surfaces of specimens prepared by curing the adhesive against silver substrates were more similar to the C(ls) spectra of DADPS than to those of the bulk adhesive. These results confirmed the preferential adsorption of DADPS onto the silver substrate from the adhesive system. The similarity of the C(ls) spectra obtained from adhesive and silver fracture surfaces indicated that a thin DADPS-rich interphase was formed between the bulk adhesive and the silver substrate and that the locus of failure was partially within this layer. However, less nitrogen and sulfur were detected on the silver fracture surface than on the adhesive fracture surface. A large amount of silver was observed on the substrate fracture surface and a trace was found on the adhesive fracture surface. These results indicated that failure of the adhesive joints was within the interphase but near the silver substrate. No evidence of chemisorption of DADPS onto the substrate was observed.  相似文献   

10.
In this article we describe the application of X-ray photoelectron spectroscopy to epoxy/dicyandiamide laminates on zinc galvanized steel which were aged under different environmental conditions involving high humidity and temperatures.

X-ray photoelectron microscopy allows us to identify the distribution of chemical elements with a lateral resolution of 10μm. Areas selected in the microscopy mode were then analyzed in the spectroscopy mode in order to get information on the local chemical composition.

We compared the spectroscopic features of the aged but freshly delaminated surfaces of samples stored under ambient conditions at room temperature with samples exposed to the “Kataplasmann” and the “KWT” test, respectively. Furthermore, a comparison was made with a model sample which was prepared in vacuum and on which the curing process was investigated.

Though there is no substantial loss in the lap-shear strength of the samples, we find drastic spectroscopic changes in the Kataplasma and KWT treated samples compared with the sample kept at room temperature. We conclude that the chemical changes induced by these tests cause an internal interphase boundary between the epoxy/metal interface and the bulk adhesive along which delamination occurs. Comparison with the behavior of the water-vapor-treated model sample gives evidence that hydrolysis is the main reaction in these tests.

The results described here complement our former study.1  相似文献   

11.
In this article we describe the application of X-ray photoelectron spectroscopy to epoxy/dicyandiamide laminates on zinc galvanized steel which were aged under different environmental conditions involving high humidity and temperatures.

X-ray photoelectron microscopy allows us to identify the distribution of chemical elements with a lateral resolution of 10μm. Areas selected in the microscopy mode were then analyzed in the spectroscopy mode in order to get information on the local chemical composition.

We compared the spectroscopic features of the aged but freshly delaminated surfaces of samples stored under ambient conditions at room temperature with samples exposed to the “Kataplasmann” and the “KWT” test, respectively. Furthermore, a comparison was made with a model sample which was prepared in vacuum and on which the curing process was investigated.

Though there is no substantial loss in the lap-shear strength of the samples, we find drastic spectroscopic changes in the Kataplasma and KWT treated samples compared with the sample kept at room temperature. We conclude that the chemical changes induced by these tests cause an internal interphase boundary between the epoxy/metal interface and the bulk adhesive along which delamination occurs. Comparison with the behavior of the water-vapor-treated model sample gives evidence that hydrolysis is the main reaction in these tests.

The results described here complement our former study.1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号