首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.  相似文献   

2.
BACKGROUND: The microtubule-dependent motility of endoplasmic reticulum (ER) tubules is fundamental to the structure and function of the ER. From in vitro assays, three mechanisms for ER tubule motility have arisen: the 'membrane sliding mechanism' in which ER tubules slide along microtubules using microtubule motor activity; the 'microtubule movement mechanism' in which ER attaches to moving microtubules; and the 'tip attachment complex (TAC) mechanism' in which ER tubules attach to growing plus ends of microtubules. RESULTS: We have used multi-wavelength time-lapse epifluorescence microscopy to image the dynamic interactions between microtubules (by microinjection of X-rhodamine-labeled tubulin) and ER (by DiOC6(3) staining) in living cells to determine which mechanism contributes to the formation and motility of ER tubules in migrating cells in vivo. Newly forming ER tubules extended only in a microtubule plus-end direction towards the cell periphery: 31.4% by TACs and 68.6% by the membrane sliding mechanism. ER tubules, statically attached to microtubules, moved towards the cell center with microtubules through actomyosin-based retrograde flow. TACs did not change microtubule growth and shortening velocities, but reduced transitions between these states. Treatment of cells with 100 nM nocodazole to inhibit plus-end microtubule dynamics demonstrated that TAC motility required microtubule assembly dynamics, whereas membrane sliding and retrograde-flow-driven ER motility did not. CONCLUSIONS: Both plus-end-directed membrane sliding and TAC mechanisms make significant contributions to the motility of ER towards the periphery of living cells, whereas ER removal from the lamella is powered by actomyosin-based retrograde flow of microtubules with ER attached as cargo. TACs in the ER modulate plus-end microtubule dynamics.  相似文献   

3.
The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in vivo after injection into cultured cells reveals that in addition to its direct effect on cytoplasmic dynein this antibody reduces the efficiency with which dynactin associates with microtubules, indicating that the antibody perturbs the cooperative binding of dynein and dynactin to microtubules during spindle/aster assembly. These results indicate that microtubule minus ends are focused into spindle poles in vertebrate somatic cells through a mechanism that involves contributions from both centrosomes and structural and microtubule motor proteins. Furthermore, these findings, together with the recent observation that cytoplasmic dynein is required for the formation and maintenance of acentrosomal spindle poles in extracts prepared from Xenopus eggs (Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Nature (Lond.). 382: 420-425) demonstrate that there is a common mechanism for focusing free microtubule minus ends in both centrosomal and acentrosomal spindles. We discuss these observations in the context of a search-capture-focus model for spindle assembly.  相似文献   

4.
Microtubule nucleation by gamma-tubulin-containing rings in the centrosome   总被引:2,自引:0,他引:2  
The microtubule cytoskeleton of animal cells does not assemble spontaneously, but instead requires the centrosome. This organelle consists of a pair of centrioles surrounded by a complex collection of proteins known as the pericentriolar material (PCM). The PCM is required for microtubule nucleation. The minus, or slow-growing, ends of microtubules are embedded in the PCM and the plus, or fast-growing, ends project outwards into the cytoplasm during interphase, or into the spindle apparatus during mitosis. gamma-Tubulin is the only component of the PCM that is so far implicated in microtubule nucleation. Here we use immuno-electron microscopic tomography to show that gamma-tubulin is localized in ring structures in the PCM of purified centrosomes without microtubules. When these centrosomes are used to nucleate microtubule growth, gamma-tubulin is localized at the minus ends of the microtubules. We conclude that microtubule-nucleating sites within the PCM are ring-shaped templates that contain multiple copies of gamma-tubulin.  相似文献   

5.
Microtubules are filamentous polar polymers with plus and minus ends. This polarity plays a crucial role in a variety of cellular functions such as chromosome movement and organelle transport. To examine the relationship between the growth polarity of microtubules and guanine nucleotide dependence, we polymerized microtubules from axonemes of sea urchin sperm flagella either with GTP or with GTP and GDP, and observed individual microtubules by dark-field microscopy. Tubulin concentrations were adjusted in each case to grow microtubules from only one end of each axoneme. The growth polarity of microtubules was determined using N-ethylmaleimide-modified tubulin (NEM-tubulin). In the presence of GTP only and at low tubulin concentrations, microtubules grew from the plus ends of axonemes. Surprisingly, in the presence of GTP and GDP, microtubules grew from the minus ends, even at high tubulin concentrations. To confirm these results, we used a perfusion chamber to monitor the growth polarity of microtubules from the same axoneme under different conditions. Exchanging a solution containing only GTP for one containing GTP and GDP elicited a switch in the growth polarity of microtubules from the plus ends to the minus ends. These results suggest that GDP directly affects microtubule polymerization and inverts microtubule growth polarity, probably by inhibiting microtubule growth at the plus ends.  相似文献   

6.
Xklp2 is a plus end-directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49-59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein-dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.  相似文献   

7.
Centrioles organize microtubules in two ways: either microtubules elongate from the centriole cylinder itself, forming a flagellum or a cilium ("template elongation"), or pericentriolar material assembles and nucleates a microtubule aster ("astral nucleation"). During spermatogenesis in most species, a motile flagellum elongates from one of the sperm centrioles, whereas after fertilization a large aster of microtubules forms around the sperm centrioles in the egg cytoplasm. Using Xenopus egg extracts we have developed an in vitro system to study this change in microtubule-organizing activity. An aster of microtubules forms around the centrioles of permeabilized frog sperm in egg extracts, but not in pure tubulin. However, when the sperm heads are incubated in the egg extract in the presence of nocodazole, they are able to nucleate a microtubule aster after isolation and incubation with pure calf brain tubulin. This provides a two-step assay that distinguishes between centrosome assembly and subsequent microtubule nucleation. We have studied several centrosomal antigens during centrosome assembly. The CTR2611 antigen is present in the sperm head in the peri-centriolar region. gamma-tubulin and certain phosphorylated epitopes appear in the centrosome only after incubation in the egg extract. gamma-tubulin is recruited from the egg extract and associated with electron-dense patches dispersed in a wide area around the centrioles. Immunodepletion of gamma-tubulin and associated molecules from the egg extract before sperm head incubation prevents the change in microtubule-organizing activity of the sperm heads. This suggests that gamma-tubulin and/or associated molecules play a key role in centrosome formation and activity.  相似文献   

8.
In the wild-type strains of the homobasidiomycete Schizophyllum commune microtubules were totally depolymerized by low concentrations of nocodazole, while high concentrations of benomyl only modified the structure of microtubule cytoskeleton. In the nocodazole-tolerant mutant strain NT30 the microtubule cytoskeleton remained partly functional at a nocodazole concentration which demolished the microtubules in the wild-type strains. The continuation of apical growth for several hours in the wild-type strain without cytoplasmic microtubules indicated that microtubules are not the major elements in hyphal extension growth. However, the irregular branching of the treated apical cells both in the nocodazole-sensitive and -tolerant strain suggested that an intact microtubule cytoskeleton is needed for maintaining the direct extension of the leading hyphae at the colony edge. In the nocodazole-sensitive strain growth in the absence of polymerized microtubules frequently led to the death of the apical cells even when the drug was removed. In the tolerant strain the nuclear divisions continued in spite of nocodazole, but the uninucleate hyphal compartments became multinucleate. This probably resulted from poor segregation of nuclei and septation of hyphae at telophase, which indicated that these processes might be dependent on proper polymerization of cytoplasmic microtubules in higher fungi. The different electrophoretic mobility of the beta-tubulin from the NT30 strain and its parental strains suggested that the tolerance of the NT30 to nocodazole could be due to a mutation in a beta-tubulin encoding gene.  相似文献   

9.
Cryptophycin-52 (LY355703) is a new synthetic member of the cryptophycin family of antimitotic antitumor agents that is currently undergoing clinical evaluation. At high concentrations (>/=10 times the IC50), cryptophycin-52 blocked HeLa cell proliferation at mitosis by depolymerizing spindle microtubules and disrupting chromosome organization. However, low concentrations of cryptophycin-52 inhibited cell proliferation at mitosis (IC50 = 11 pM) without significantly altering spindle microtubule mass or organization. Cryptophycin-52 appears to be the most potent suppressor of microtubule dynamics found thus far. It suppressed the dynamic instability behavior of individual microtubules in vitro (IC50 = 20 nM), reducing the rate and extent of shortening and growing without significantly reducing polymer mass or mean microtubule length. Using [3H]cryptophycin-52, we found that the compound bound to microtubule ends in vitro with high affinity (Kd, 47 nM, maximum of approximately 19.5 cryptophycin-52 molecules per microtubule). By analyzing the effects of cryptophycin-52 on dynamics in relation to its binding to microtubules, we determined that approximately 5-6 molecules of cryptophycin-52 bound to a microtubule were sufficient to decrease dynamicity by 50%. Cryptophycin-52 became concentrated in cells 730-fold, and the resulting intracellular cryptophycin-52 concentration was similar to that required to stabilize microtubule dynamics in vitro. The data suggest that cryptophycin-52 potently perturbs kinetic events at microtubule ends that are required for microtubule function during mitosis and that it acts by forming a reversible cryptophycin-52-tubulin stabilizing cap at microtubule ends.  相似文献   

10.
PURPOSE: Microtubule-based transport facilitates the endocytosis of exogenous macromolecules. We have determined how microtubule accumulation and disassembly alter endocytosis. METHODS: The effects of paclitaxel, which promotes microtubule assembly, and nocodazole, which promotes microtubule disassembly, on fluid-phase and receptor-mediated endocytosis were measured using uptake of horseradish peroxidase and 125I-transferrin, respectively. Changes in membrane and microtubule organization were examined by fluorescence microscopy. RESULTS: Neither paclitaxel (4 microM, 60 min pretreatment) nor nocodazole (1 microgram/ml, 60 min pretreatment) significantly inhibited fluid-phase endocytosis. However, paclitaxel caused a redistribution of fluorescent fluid-phase marker to the periphery. Both paclitaxel and nocodazole treatment significantly (p < or = 0.05) reduced the initial uptake of 125I-transferrin at 5 min to approximately 50% of control. Despite the similarity of the effects on initial endocytic uptake, the effects on steady state accumulation of 125I-transferrin were quite distinct. Exposure of CV-1 cells to paclitaxel for an additional 30, 60 or 90 min also showed reduced accumulation of 125I-transferrin up to a maximum significant (p < or = 0.05) inhibition of 48% +/- 10% of control at 90 min. In contrast, nocodazole caused an initial significant (p < or = 0.05) increase in 125I-transferrin accumulation after 30 min (159% +/- 13% of control), while by 90 min 125I-transferrin accumulation had returned to control levels. Microtubule content, particularly of stable microtubules, was increased in CV-1 cells by paclitaxel, but abolished by nocodazole treatment. CONCLUSIONS: Our data show that changes in the microtubule array can alter the dynamics of receptor movement through the endosomal pathway. However, microtubule assembly versus disassembly have different effects.  相似文献   

11.
The oligodendrocyte is the glial cell responsible for the formation and maintenance of CNS myelin. Because the development of neuronal morphology is known to depend on the presence of highly organized microtubule arrays, it may be hypothesized that the properties of microtubules influence the form and function of oligodendrocytes. The goals of the present study were to define the physical attributes of microtubules in oligodendrocytes maintained in vitro. The results of electron and confocal microscopy indicate that microtubules are present throughout the cell bodies and large and small processes of oligodendrocytes and are rarely associated with discrete microtubule-organizing centers. A modified "hooking" protocol demonstrated that the polarity orientation of microtubules is uniformly plus-end distal in small oligodendrocyte processes, compared with a nonuniform, predominantly plus-end distal orientation in large processes. Oligodendrocytes were exposed to the microtubule-depolymerizing drug nocodazole to examine microtubule stability in these cells. The results suggest that oligodendrocyte microtubules can be resolved into at least three distinct microtubule populations that differ in their kinetics of depolymerization in the presence of nocodazole. These findings suggest that the properties of the oligodendrocyte microtubule array reflect the functions of the different regions of this highly specialized cell.  相似文献   

12.
Earlier studies have shown that the Golgi apparatus was fragmented and dispersed in herpes simplex virus 1-infected Vero and HEp-2 cells but not in human 143TK- cells, that the fragmentation and dispersal required viral functions expressed concurrently with or after the onset of DNA synthesis (G. Campadelli-Fiume, R. Brandimarti, C. Di Lazzaro, P. L. Ward, B. Roizman, and M. R. Torrisi, Proc. Natl. Acad. Sci. USA 90:2798-2802, 1993), and that in 143TK- cells, but not Vero or HEp-2 cells, infected with viral mutants lacking the UL20 gene virions were glycosylated and transported to extracellular space (J. D. Baines, P. L. Ward, G. Campadelli-Fiume, and B. Roizman, J. Virol. 65:6414-6424, 1991; E. Avitabile, P. L. Ward, C. Di Lazzaro, M. R. Torrisi, B. Roizman, and G. Campadelli-Fiume, J. Virol. 68:7397-7405, 1994). Experiments designed to elucidate the role of the microtubules and of intact or fragmented Golgi apparatus in the exocytosis of virions showed the following. (i) In all cell lines tested (Vero, 143TK-, BHK, and Hep-2) microtubules underwent fragmentation particularly evident at the cell periphery and then reorganized into bundles which circumvent the nucleus. This event was not affected by inhibitors of viral DNA synthesis. We conclude that redistribution of microtubules may be required but is not sufficient for the fragmentation and dispersal of the Golgi apparatus. (ii) In all infected cell lines tested, nocodazole caused fragmentation and dispersal of the Golgi and a far more extensive depolymerization of the microtubules than was seen in untreated, infected Vero or HEp-2 cells. Taxol precluded the depolymerization of the microtubules and fragmentation of the Golgi in both infected cell lines. Neither nocodazole nor taxol affected the exocytosis of infectious virus from Vero, HEp-2, or 143TK- cells infected with wild-type virus. We conclude that the effects of nocodazole or of taxol are dominant over the effects of viral infection in the cell lines tested and that viral exocytosis is independent of the organization of microtubules or of the integrity of the Golgi apparatus. Lastly, the data suggest that herpes simplex viruses have evolved an exocytic pathway for which the UL20 protein is a component required in some cells but not others and in which this protein does not merely compensate for the fragmentation and dispersal of the Golgi apparatus.  相似文献   

13.
The transport of vesicular organelles along microtubules has been well documented in a variety of systems, but the molecular mechanisms underlying this process are not well understood. We have developed a method for preparing extracts from Dictyostelium discoideum which supports high levels of bidirectional, microtubule-based vesicle transport in vitro. This organelle transport assay was also adapted to observe specifically the motility of vesicles in the endocytic pathway. Vesicle transport can be reconstituted by recombining a high-speed supernatant with KI-washed organelles, which do not move in the absence of supernatant. Furthermore, a microtubule affinity-purified motor fraction supports robust bidirectional movement of the salt-washed organelles. The plus and minus end-directed transport activities can be separated by exploiting differences in their affinities for microtubules in the presence of 0.3 M KCl. We also used our assay to examine organelle transport in a strain of Dictyostelium overexpressing a 380-kDa C-terminal fragment of the cytoplasmic dynein heavy chain, which displays an altered microtubule pattern (380-kDa cells; [Koonce and Samso, Mol. Biol. Cell 7:935-948, 1996]). We have found that the frequency and velocity of minus end-directed membrane organelle movements were significantly reduced in 380-kDa cells relative to wild-type cells, while the frequency and velocity of plus end-directed movements were equivalent in the two cell types. The 380-kDa C-terminal fragment cosedimented with membrane organelles, although its affinity was significantly lower than that of native dynein. An impaired membrane-microtubule interaction may be responsible for the altered microtubule patterns in the 380-kDa cells.  相似文献   

14.
The major microtubule-associated protein in echinoderms is a 77-kDa, WD repeat protein, called EMAP. EMAP-related proteins have been identified in sea urchins, starfish, sanddollars, and humans. We describe the purification of sea urchin EMAP and demonstrate that EMAP binding to microtubules is saturable at a molar ratio of 1 mol of EMAP to 3 mol of tubulin dimer. Unlike MAP-2, MAP-4, or tau proteins, EMAP binding to microtubules is not lost by cleavage of tubulin with subtilisin. In addition to binding to the microtubule polymer, EMAP binds to tubulin dimers in a 1:1 molar ratio. The abundance of EMAP in the egg suggests that it could function to regulate microtubule assembly. To test this hypothesis, we examined the effects of EMAP on the dynamic instability of microtubules nucleated from axoneme fragments as monitored by video-enhanced differential interference contrast microscopy. Addition of 2.2 microM EMAP to 21 microM tubulin results in a slight increase in the elongation and shortening velocities at the microtubule plus ends but not at the minus ends. Significantly, EMAP inhibits the frequency of rescue 8-fold without producing a change in the frequency of catastrophe. These results indicate that EMAP, unlike brain microtubule-associated proteins, promotes microtubule dynamics.  相似文献   

15.
After addition of 20 mM calcium ionophore A23187 to cultured PK (pig kidney embryo) cells, [Ca++] in cytosol increased by more than 10 times. The maximum [Ca++] concentration was observed 1-2 min after drug introduction. Later on [Ca++] gradually decreased, and after 30 min of incubation with A23187 [Ca++] its concentration was 3-5 times higher than in the norm. 1 min after introduction of the calcium ionophore, mitotic spindles shortened for 1/3 and the angle of divergence of spindle microtubules from the centrosome extended. These changes remained for 5 min of treatment. After nocodazole treatment the length of the mitotic spindle reduced (2 min), then mitotic spindle and the metaphase plate were disrupted. The rate of mitotic spindle shortening after addition of the ionophore is about the same as after addition of nocodazole, but after ionophore treatment the metaphase plate remained for more than 5 min. Based on the results obtained we suggest that the maximum distance between spindle poles at metaphase is in the intact cell, and after any perturbation of normal microtubule dynamics the spindle may rapidly collapse. The collapsed mitotic spindle becomes more stable and its size is determined predominantly by kinetochore fibers. The metaphase spindle is completely and rapidly destroyed when the microtubule growth is prohibited, but it is preserved when this growth is restricted.  相似文献   

16.
The centrosome must be replicated once, and only once, during each cell cycle. To achieve this somatic cells need to synthesize centrosome proteins, target those centrosome proteins to the parental centrosome, and then assemble the centrosome subunits into a functional organelle. The mechanisms that underlie each of these processes are not known. Studies were performed to investigate whether cellular microtubules are involved in centrosome doubling events. For these experiments, CHO cells were arrested in either hydroxyurea (HU) alone or in HU plus a microtubule inhibitor for 3640 h. The cells then were induced to enter mitosis and the numbers of spindle poles/centrosomes were counted following processing of the cells for immunofluorescence microscopy using anticentrosome antiserum. These studies demonstrated that centrosome replication events occurred in cells arrested with either HU alone or HU and taxol while centrosome replication did not occur in cells treated with HU and either nocodazole or colcemid. Immunoblot analysis determined that centrosome proteins were synthesized in HU/nocodazole-arrested cells and demonstrated that the role of microtubules in the centrosome replication process is not to ensure the synthesis of centrosome subunits. Rather, our results suggest that microtubules may be involved in the transport/targeting of centrosome subunits to the parental centrosome during duplication events. For microtubules to contribute to the transport of centrosome subunits during centrosome doubling, centrosome subunits would need to be able to bind to microtubules. To test this, co-sedimentation studies were performed and it was determined that the centrosome proteins, though overproduced under these conditions, remained soluble in HU/nocodazole-treated cells and co-pelleted with taxol-stabilized microtubules in the presence of GTP and AMP-PNP. Moreover, co-sedimentation of one of the centrosome proteins, PCM-1, with microtubules could be inhibited by pre-incubation of extracts with antibodies against dynactin. Together, these data suggest that during centrosome replication in somatic mammalian cells, PCM-1, and perhaps other centrosome components, are targeted to the centrosome via transport along microtubules by motor complexes that include dynein/dynactin.  相似文献   

17.
Cryptophycin 1 is a remarkably potent antiproliferative compound that shows excellent antitumor activity against mammary, colon, and pancreatic adenocarcinomas in mouse xenographs. At picomolar concentrations, cryptophycin 1 blocks cells in the G2/M phase of the cell cycle by an apparent action on microtubules. The compound binds to tubulin, inhibits microtubule polymerization, and depolymerizes preformed microtubules in vitro. Its exceptionally powerful antitumor activity (many-fold greater than paclitaxel or the vinca alkaloids) raises important questions about its mechanism of action. By quantitative video microscopy, we examined the effects of cryptophycin 1 on the dynamics of individual microtubules assembled to steady state from bovine brain tubulin. At low nanomolar concentrations, in the absence of net microtubule depolymerization, cryptophycin 1 potently stabilized microtubule dynamics. It reduced the rate and extent of microtubule shortening and growing and increased the frequency of rescue. The results suggest that cryptophycin 1 exerts its antiproliferative and antimitotic activity by binding reversibly and with high affinity to the ends of microtubules, perhaps in the form of a tubulin-cryptophycin 1 complex, resulting in the most potent suppression of microtubule dynamics yet described.  相似文献   

18.
Neural crest cells are motile and mitotic, whereas their neuronal derivatives are terminally post-mitotic and consist of stationary cell body from which processes grow. The present study documents changes in the cytoskeleton that occur during neurogenesis in cultures of avain neural crest cells. The undifferentiated neural crest cells contain dense bundles of actin filaments throughout their cytoplasm, and a splayed array of microtubules attached to the centrosome. In newly differentiating neurons, the actin bundles are disrupted and most of the remaining actin filaments are reorganized into a cortical layer underlying the plasma membrane of the cell body and processes. Microtubules are more abundant in newly-differentiating neurons than in the undifferentiated cells, and individual microtubules can be seen dissociated from the centrosome. Neuron-specific beta-III tubulin appears in some crest cells prior to cessation of motility and cell division, and expression increases with total microtubule levels during neurogenesis. To investigate how these early cytoskeletal changes might contribute to alterations in morphology during neurogenesis, we have disrupted the cytoskeleton with pharmacologic agents. Microfilament disruption by cytochalasin immediately arrests the movement of neural crest cells and causes them to round-up, but does not significantly change the morphology of the immature neurons. Microtubule depolymerization by nocodazole slows the movement of undifferentiated cells and causes retraction of processes extended by the immature neurons. These results suggest that changes in the actin and microtubule arrays within neural crest cells govern distinct aspects of their morphogenesis into neurons.  相似文献   

19.
Pericentrin and gamma-tubulin are integral centrosome proteins that play a role in microtubule nucleation and organization. In this study, we examined the relationship between these proteins in the cytoplasm and at the centrosome. In extracts prepared from Xenopus eggs, the proteins were part of a large complex as demonstrated by sucrose gradient sedimentation, gel filtration and coimmunoprecipitation analysis. The pericentrin-gamma-tubulin complex was distinct from the previously described gamma-tubulin ring complex (gamma-TuRC) as purified gamma-TuRC fractions did not contain detectable pericentrin. When assembled at the centrosome, the two proteins remained in close proximity as shown by fluorescence resonance energy transfer. The three- dimensional organization of the centrosome-associated fraction of these proteins was determined using an improved immunofluorescence method. This analysis revealed a novel reticular lattice that was conserved from mammals to amphibians, and was organized independent of centrioles. The lattice changed dramatically during the cell cycle, enlarging from G1 until mitosis, then rapidly disassembling as cells exited mitosis. In cells colabeled to detect centrosomes and nucleated microtubules, lattice elements appeared to contact the minus ends of nucleated microtubules. Our results indicate that pericentrin and gamma-tubulin assemble into a unique centrosome lattice that represents the higher-order organization of microtubule nucleating sites at the centrosome.  相似文献   

20.
The interplay between microtubules and the motor enzyme, cytoplasmic dynein, is essential for organisation of the cytoplasm, organelle transport, and cell division in eukaryotic cells. During mitosis, cytoplasmic dynein organises microtubules into two spindle pole asters, as well as the comparable multiple cytoplasmic asters induced by the microtubule-stabilising agent taxol. The mechanisms behind this cell cycle-regulated organisation are, however, not fully understood. We report here that the unidirectional dynein-dependent pigment organelle aggregation in taxol-treated melanophores from Atlantic cod, induces multiple microtubule asters. Usually, the pigment aggregates to a central pigment mass in the cell center, but pigment aggregation in taxol-treated cells induces formation of several peripheral pigment clusters that each localise to the center of a microtubule aster formation. When a cell with previously formed peripheral pigment clusters redisperse pigment, the asters disappear. Upon a subsequent reaggregation of the pigment, the aster formations reappear. The results indicate that the pigment aggregation process organises the microtubules into these formations. Immuno-electron microscopy of isolated pigment organelles indicates the presence of several dynein molecules on each pigment organelle, making it possible for each organelle to interact with several microtubules and thereby focusing microtubule minus ends. The possibility of unidirectional dynein-dependent organelle movement for organising microtubules into asters during cell division, and similarities in signal transduction between mitosis and pigment movement, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号