首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The G protein alpha subunits, alphas and alphai2, have stimulatory and inhibitory effects, respectively, on a common effector protein, adenylyl cyclase. These effects require a GTP-dependent conformational change that involves three alpha subunit regions (Switches I-III). alphas residues in three adjacent loops, including Switch II, specify activation of adenylyl cyclase. The adenylyl cyclase-specifying region of alphai2 is located within a 78-residue segment that includes two of these loops but none of the conformational switch regions. We have used an alanine-scanning mutagenesis approach within Switches I-III and the 78-residue segment of alphai2 to identify residues required for inhibition of adenylyl cyclase. We found a cluster of conserved residues in Switch II in which substitutions cause major losses in the abilities of both alphai2 and alphas to modulate adenylyl cyclase activity but do not affect alpha subunit expression or the GTP-induced conformational change. We also found two regions within the 78-residue segment of alphai2 in which substitutions reduce the ability of alphai2 to inhibit adenylyl cyclase, one of which corresponds to an effector-activating region of alphas. Thus, both alphai2 and alphas interact with adenylyl cyclase using: 1) conserved Switch II residues that communicate the conformational state of the alpha subunit and 2) divergent residues that specify particular effectors and the nature of their modulation.  相似文献   

2.
Dolichol-phosphate-mannose (Dol-P-Man) serves as a donor of mannosyl residues in major eukaryotic glycoconjugates. It donates four mannosyl residues in the N-linked oligosaccharide precursor and all three mannosyl residues in the core of the glycosylphosphatidylinositol anchor. In yeasts it also donates one mannose to the O-linked oligosaccharide. The yeast DPM1 gene encodes a Dol-P-Man synthase that is a transmembrane protein expressed in the endoplasmic reticulum. We cloned human and mouse homologues of DPM1, termed hDPM1 and mDPM1, respectively, both of which encode proteins of 260 amino acids, having 30% amino acid identity with yeast Dpm1 protein but lacking a hydrophobic transmembrane domain, which exists in the yeast synthase. Human and mouse DPM1 cDNA restored Dol-P-Man synthesis in mouse Thy-1-deficient mutant class E cells. Mouse class E mutant cells had an inactivating mutation in the mDPM1 gene, indicating that mDPM1 is the gene for class E mutant. In contrast, hDPM1 and mDPM1 cDNA did not complement another Dol-P-Man synthesis mutant, hamster Lec15 cells, whereas yeast DPM1 restored both mutants. Therefore, in contrast to yeast, mammalian cells require hDPM1/mDPM1 protein and a product of another gene that is defective in Lec15 mutant cells for synthesis of Dol-P-Man.  相似文献   

3.
In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner.  相似文献   

4.
5.
The pheromone-responsive Gbeta subunit of Saccharomyces cerevisiae (encoded by STE4) is rapidly phosphorylated at multiple sites when yeast cells are exposed to mating pheromone. It has been shown that a mutant form of Ste4 lacking residues 310-346, ste4delta310-346, cannot be phosphorylated, and that its expression leads to defects in recovery from pheromone stimulation. Based on these observations, it was proposed that phosphorylation of Ste4 is associated with an adaptive response to mating pheromone. In this study we used site-directed mutagenesis to create two phosphorylation null (Pho-) alleles of STE4: ste4-T320A/S335A and ste4-T322A/S335A. When expressed in yeast, these mutant forms of Ste4 remained unphosphorylated upon pheromone stimulation. The elimination of Ste4 phosphorylation has no discernible effect on either signaling or adaptation. In addition, disruption of the FUS3 gene, which encodes a pheromone-specific MAP kinase, leads to partial loss of pheromone-induced Ste4 phosphorylation. Two-hybrid analysis suggests that the ste4delta310-346 deletion mutant is impaired in its interaction with Gpa1, the pheromone-responsive Galpha of yeast, whereas the Ste4-T320A/S335A mutant has normal affinity for Gpa1. Taken together, these results indicate that pheromone-induced phosphorylation of Ste4 is not an adaptive mechanism, and that the adaptive defect exhibited by the 310-346 deletion mutant is likely to be due to disruption of the interaction between Ste4 and Gpa1.  相似文献   

6.
We have shown previously that overexpression of the epsilon isoform of protein kinase C (PKCepsilon) in rat colonic epithelial cells causes malignant transformation, possibly by interacting with the ras signal transduction pathway (Oncogene 12: 847, 1996). We have now performed experiments to examine certain early steps in the ras signaling pathway. A marked increase of Raf-1 phosphorylation was detected in tumorigenic ras-transformed D/ras as well as in D/epsilon cells (overexpressing PKCepsilon), compared to the nontumorigenic D/WT parental line. Moreover, in the PKCepsilon-transformed D/epsilon cell line, stable transfection with a dominant-negative raf-1 (DNraf) sequence caused complete regression of the neoplastic phenotype. These results suggested that PKCepsilon-induced transformation was associated with increased Raf-1 activation, and that DNraf could block the oncogenic effect of PKCepsilon. Furthermore, transfection of D/WT cells with dominant-negative ras induced arrest of cell growth, and subsequent transfection with PKCepsilon cDNA enhanced cell proliferation and induced neoplastic transformation. These results suggest that ras acts upstream of PKCepsilon, and that overexpression of PKCepsilon circumvents the block in cell proliferation caused by dominant-negative ras. We conclude that PKCepsilon exerts its oncogenic activity in rat colonic cells by affecting the ras signaling cascade at the level of Raf-1 activation.  相似文献   

7.
Ca2+/calmodulin-sensitive adenylyl cyclase plays a role in several forms of synaptic plasticity and learning. To understand how cellular signals from neuronal activity during behavioral stimuli might be integrated by adenylyl cyclase, we have characterized the response of type I adenylyl cyclase to transient Ca2+ stimuli. Stimulation by a several second Ca2+ stimulus is delayed, rising to a peak after the Ca2+ stimulus has ended. We attempted to identify the site of the persistent Ca2+ signal that enabled adenylyl cyclase stimulation to increase after free Ca2+ had declined. Free calmodulin itself displayed no persistent activation by Ca2+ and was unable to activate adenylyl cyclase if exposed to low Ca2+ solution <1 s before reaching adenylyl cyclase. In contrast, activation of the calmodulin-adenylyl cyclase complex persisted for seconds after Ca2+ stimulus. Activation decayed with a time constant of 6 or 13 s depending on assay conditions. These results suggest that the calmodulin-adenylyl cyclase complex can serve as a site of cellular memory for a Ca2+ transient that has ended even before adenylyl cyclase is fully activated.  相似文献   

8.
Photodynamic therapy with 5-aminolevulinic acid (ALA-PDT) is based on photosensitization by endogenous synthesis of protoporphyrin IX and its transient accumulation especially in malignant epithelially derived tissues. Recent studies have indicated that ALA-PDT is effective for the treatment of solar keratoses (SK), but there has been a lack of long-term clinical follow-up. The goal of the present study was to investigate the immediate and long-term effect of ALA-PDT on SK. Twenty-eight patients with a total of 251 SK were enrolled in the study. Standard treatment involved the topical application of 20% ALA, under occlusive and light-shielding dressing for 4 hours before exposure to UVA and/or different wave bands or wave band combinations of polychromatic visible light (full-spectrum visible light, and/or different wave bands of filtered visible light > 515, > 530, > 570, or > 610 nm) in one or two treatment sessions. The primary complete response rate of SK to ALA-PDT was 64% after one treatment, but 85% when the responses to a second treatment were included. Taken all treatments together, the complete response rate for lesions on face, scalp and neck was 93% for full-spectrum visible light, 96% for the combination of full-spectrum visible light and filtered light, 91% for different wave bands of filtered visible light, and 100% for the combination of long wave UVA and full-spectrum visible light, respectively. The complete response rate for lesions on forearms and hands was 51% for full-spectrum visible light and 33% for the combination of full-spectrum visible light and filtered light. The greater response rate for SK on the face, scalp, and neck was associated with a higher surface fluorescence and immediate response rate after ALA photosensitization at these sites (chi 2; p = 0.0001). However, due to the treatment protocol the mean light dose applied to lesions on the face, scalp and neck (50 J cm-2) was substantially higher than that for lesions on forearms and hands (35 J cm-2). In the long term follow-up of SK on face scalp and neck, the projected disease-free rate at 36 months after therapy was 71% for lesions treated with full-spectrum visible light versus 23% for lesions treated with different wave bands of filtered light (Log rank-Mantel Cox; p = 0.0001). These results indicate that treatment with full-spectrum visible light at higher light doses may be the most effective and promising form of light exposure in ALA-PDT of SK.  相似文献   

9.
The Saccharomyces cerevisiae Cdc14 protein phosphatase and Dbf2 protein kinase have been implicated to act during late M phase, but their functions are not known. We report here that CDC14 is a low-copy suppressor of the dbf2-2 mutation at 37 degrees C. The kinase activity of Dbf2 accumulated at a high level, in vivo, during a cdc14 arrest and was also much higher in cdc14 mutant cells at the permissive temperature of growth, therefore in cycling mutant cells than in cycling wild-type cells. This correlated with the accumulation of the more slowly migrating form of Dbf2, previously shown to correspond to the hyperphosphorylated form of the protein. The finding that the dbf2-2 mutation could be rescued following overproduction of catalytically inactive forms of Cdc14 suggested that the control of Dbf2 activity by Cdc14 might be only indirect and independent of Cdc14 phosphatase activity. However, it was found that Cdc14 could form oligomers within the cell, thus leaving open the possibility that catalytically inactive Cdc14 might associate with wild-type Cdc14 and rescue dbf2-2 in a phosphatase-dependent manner. We confirmed that overexpression of CDC14 could rescue mutations in CDC15, which encodes another kinase also implicated to act in late M phase. Cells of a cdc15-2 dbf2-2 double mutant died at temperatures much lower than did either single mutant, whereas there was only a slight additive phenotype in the cdc14-1 dbf2-2 and cdc14-1 cdc15-2 double mutant cells. Finally, functional association between Cdc14 and Dbf2 (and also Cdc15) was confirmed by the finding that the cdc14, dbf2 and cdc15 mutations could be partially rescued by the addition of 1.2 M sorbitol to the culture medium. Our data are the first to demonstrate a functional link between Cdc14 and Dbf2 based on both biochemical and genetic information.  相似文献   

10.
Heat shock (25 degrees C to 37 degrees C for 30 min) acquisition of thermotolerance (at 50 degrees C) was observed in a yeast trehalose synthase mutant and the corresponding control strain. The acquisition of thermotolerance in the control strain was maintained for a significantly longer time than in the trehalose synthase mutant. The heat shock was associated with the synthesis of specific heat shock proteins and, in the case of the control strain, also trehalose accumulation. Inhibition of protein synthesis during the heat shock totally abolished acquisition of thermotolerance in both strains but not trehalose accumulation in the control. It was concluded that trehalose may only be required for prolonged stress protection while heat shock proteins are required for heat shock acquisition of thermotolerance.  相似文献   

11.
Activation of the mitogen-activated protein (MAP) kinase pathway has been associated with both cell proliferation and differentiation. Constitutively activated forms of Mek (MAP kinase/Erk kinase) and Erk (MAP kinase) have been previously shown capable of inducing differentiation or proliferation in nonhematopoietic cells. To specifically examine the role of Erk activation in megakaryocytic growth and development, we activated the MAP kinase pathway by the transfection of constitutively activated Mek or Erk cDNA into a human megakaryoblastic cell line, CMK, by electroporation. The CMK transfectant clones that expressed constitutively activated Mek or Erk showed morphologic changes of differentiation. Transfected cells also showed expression of mature megakaryocytic cell surface markers. The MAP kinase pathway was also activated by treatment of the hematopoietic cells with a cytokine that activates Erk. The treatment of CMK cells with stem cell factor (SCF ) caused MAP kinase activation and induced differentiation by the expression of mature megakaryocytic cell surface markers. The effects of the SCF treatment were inhibited by pretreatment with a specific inhibitor of the MAP kinase pathway, PD98059. In this report, we conclude that activation of the MAP kinase pathway was both necessary and sufficient to induce differentiation in this megakaryoblastic cell line.  相似文献   

12.
13.
p190 is a GTPase-activating protein (GAP) for the Rho family of GTPases. The GAP domain of p190 is at the C terminus of the protein. At its N terminus, p190 contains a GTP binding domain of unknown significance. We have introduced a mutation (Ser36 --> Asn) into this domain of p190 that decreased its ability to bind guanine nucleotide when expressed as a hemagglutinin (HA)-tagged protein in COS cells. In vitro, both the wild type and S36N mutant HA-p190 proteins showed similar GAP activities toward RhoA, but when expressed in NIH 3T3 fibroblasts only wild type p190 appeared able to function as a RhoGAP. Wild type HA-p190 induced a phenotype of rounded cells with long, beaded extensions similar to that seen when Rho function is disrupted by ADP-ribosylation. HA-p190(S36N), although expressed at a similar level to the wild type protein, had no discernible effect on the cells. The beaded extension phenotype induced by wild type HA-p190 required GAP function. A GAP-defective mutant, p190(R1283A), had no effect on cell morphology. Moreover, the beaded extension phenotype could be suppressed by co-expression of a gain-of-function Rho mutant, RhoA(G14V), or Rac mutant, Rac1(G12V). Activation of the Jun kinase (JNK) via muscarinic receptors was inhibited by wild type HA-p190, but JNK activity was enhanced by the S36N mutant. Co-expression of HA-p190 with a fragment containing only the mutated GTP binding domain partially inhibited the beaded extension phenotype, suggesting that it may sequester a factor required for p190 function. Taken together these data demonstrate that within the cell, the Rho/Rac GAP activity of p190 can be regulated by the N-terminal GTP binding domain.  相似文献   

14.
15.
16.
The effects of chronic maternal administration of ethanol on nitric oxide synthase (NOS) activity and the numbers of NOS containing neurons, and CA1 and CA3 pyramidal neurons in the hippocampus of the near term fetal guinea pig at gestational day (GD) 62 were investigated. Pregnant guinea pigs received oral administration of 4 g ethanol/kg maternal body weight (n = 5), isocaloric sucrose/pair feeding (n = 5) or water (n = 5), or no treatment (NT; n = 5) from GD 2 to GD 61. NOS activity in the 25,000 x g supernatant of hippocampal homogenate was determined using a radiometric assay. The numbers of NOS containing neurons, and CA1 and CA3 pyramidal neurons were determined using NADPH diaphorase histochemistry and cresyl violet staining, respectively. The chronic ethanol regimen produced a maternal blood ethanol concentration of 193 +/- 13 mg/dl at 1 h after the second divided dose on GD 57. Chronic ethanol exposure produced fetal body, brain, and hippocampal growth restriction and decreased fetal hippocampal NOS activity compared with the isocaloric sucrose/pair feeding, water, and NT experimental groups, but did not affect the number of NOS containing and CA1 or CA3 pyramidal neurons. These data demonstrate that, in the near term fetus, chronic maternal administration of ethanol suppresses hippocampal NOS activity and consequent formation of NO, without loss of NOS containing neurons and prior to loss of CA1 pyramidal neurons that occurs in the adult.  相似文献   

17.
The aim of the present work is to study the participation of RAS2/PKA signal pathway in the nitrogen regulation of L-leucine transport in yeast cells. The study was performed on Saccharomyces cerevisiae isogenic strains with the normal RAS2 gene, the RAS2val19 mutant and the disrupted ras2::LEU2. These strains bring about different activities of the RAS2/PKA signal pathway, L-(14C)-Amino acid uptake measurements were determined in cells grown in a rich YPD medium with a mixed nitrogen source or in minimal media containing NH4+ or L-proline as the sole nitrogen source. We report herein that in all strains used, even in those grown in a minimal proline medium, the activity of the general amino acid permease (GAP1) was not detected. L-Leucine uptake in these strains is mediated by two kinetically characterized transport systems. Their KT values are of the same order as those of S1 and S2 L-leucine permeases. Mutation in the RAS2 gene alters initial velocities and Jmax values in both high and low affinity L-leucine transport systems. Activation of the RAS2/PKA signalling pathway by the RAS2val19 mutation, blocks the response to a poor nitrogen source whereas inactivation of RAS2 by gene disruption, results in an increase of the same response.  相似文献   

18.
CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.  相似文献   

19.
Fzo1p is a novel component required for the biogenesis of functional mitochondria in the yeast Saccharomyces cerevisiae. The protein is homologous to Drosophila Fzo, the first known protein mediator of mitochondrial fusion. Deletion of the FZO1 gene results in a petite phenotype, loss of mitochondrial DNA, and a fragmented mitochondrial morphology. Fzo1p is an integral protein of the mitochondrial outer membrane exposing its major part to the cytosol. It is imported into the outer membrane in a receptor-dependent manner. Fzo1p is part of a larger protein complex of 800 kDa, and presumably is the first identified component of the yeast mitochondrial fusion machinery.  相似文献   

20.
pas mutants of Saccharomyces cerevisiae are disturbed in peroxisome assembly (pas) and proliferation. Here we report the characterization of the PAS10 gene and its product (PAS10) that is essential for the import of a large subset of proteins into the peroxisomal matrix. PAS10, a protein of 69 kDa, is a member of the tetratricopeptide repeat, or snap helix, protein family, characterized by several direct repeats of a degenerate 34-amino acid motif (Sikorski, R. S., Boguski, M. S., Goebl, M. & Hieter, P. (1990) Cell 60, 307-317). Other members of this family are MAS70 (S. cerevisiae) and MOM72 (Neurospora crassa), which are mitochondrial receptors for protein import. A pas10 null mutant accumulates peroxisomal, leaflet-like membrane structures and exhibits deficient import of a number of peroxisomal matrix enzymes, particularly of proteins with an SKL-like import signal. In contrast, 3-ketoacyl-CoA thiolase associated with these membranes is resistant in vitro to degradation by proteinase K, indicating true protein import. These results suggest that PAS10 is an essential component of a peroxisomal import machinery which mediates the translocation of a specific subset of proteins to the peroxisomal matrix with an SKL-like import signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号