首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在不同Li/Fe配比、合成工艺相同条件下,采用Sol-gel液相合成法合成LiFePO4/C正极材料。利用XRD衍射分析和SEM扫描电镜对合成的粉体进行物相表征,通过交流阻抗测试和充放电对材料进行电化学性能研究。结果表明,Li、Fe物质的量比为1.05时合成的LiFePO4/C结晶度最优,交流阻抗曲线显示该材料具有较小的内部阻抗,极化现象小,在0.2C倍率放电下首次放电比容量为127.5mA·h/g,电化学性能较佳。  相似文献   

2.
针对LiTi2(PO4)3基固态电解质电导率低的问题,采用浙江三门高岭土矿作为主要原料,以高温固相法制备铝、镁、硅共掺杂钠超离子导体(NASICON)型快离子导体Li1+2x+2yAlxMgyTi2-x-ySixP3-xO12.研究掺杂比例、温度对固态电解质离子电导率的影响.结果表明,组成为Li1.8Al0.1Mg0.3Ti1.6Si0.1P2.9O12固体电解质在423 K时有最高离子电导率7.86×10-4 S·cm-1.以该组成固态电解质为基片,喷雾热解原位制备Al/ Li1+xV3O8/ Li1.8Al0.1Mg0.3Ti1.6Si0.1 P2.9O12 /C全固态电池并在1.8~3.9 V电压区间进行50次充放电测试.该电池具有较好的稳定性及循环容量保持能力.30次循环以后放电容量基本稳定在190~205 mAh·g-1之间,充放电效率大于90%.  相似文献   

3.
LiFePO4 nanorods were facilely synthesized under hydrothermal condition. The crystalline structure and particle morphology of LiFePO4 powders were characterized by X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The electrochemical properties of LiFePO4/Li cells were investigated by galvanostatic test and cyclic voltammetry (CV). The XRD result demonstrated LiFePO4 powder had an orthorhombic structure with a space group of Pnma. The synthesized LiFePO4 nanorods exhibited a...  相似文献   

4.
采用固相反应法合成了锂离子电池正极材料Li0.97Re0.01FePO4(Re=Er,Y,Gd,Nd,La),采用X射线衍射、恒电流充放试验对掺杂试样的微观结构和电化学性能进行测试。试验结果表明:掺杂稀土金属离子对LiFePO4的晶体结构没有影响,与LiFePO4相比,掺杂Er3+,Y3+,Gd3+的试样具有优良的循环性能和倍率性能,而掺杂Nd3+,La3+的试样的循环性能和倍率性能较差。掺杂试样中,Li0.97Gd0.01FePO4的电化学性能最佳,在C/10和1C(1C=120 mA.g-1)倍率下放电容量均最大。  相似文献   

5.
A novel composite polymer electrolyte was prepared by blending an appropriate amount of LiC104 and 10% (mass fraction) fumed SiO2 with the block copolymer of poly (ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH2CI2.The ionic conductivity, electrochemical stability, interfacial characteristic and thermal behavior of the composite polymer electrolyte were studied by the measurements of AC impedance spectroscopy, linear sweep voltammetry and differential scanning calorimetry (DSC), respectively. The glass transition temperature acts as a function of salt concentration, which increases with the LiC104 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relation between the filled fumed SiO2 and the lithium salt in the composite polymer electrolyte. Over the salt concentration range and the measured temperature, the maximum ionic conductivity of the composite polymer electrolyte (10^4.41 S/cm) appeared at EO/Li=25 (mole ratio) and 30~C, and the beginning oxidative degradation potential versus Li beyond 5 V.  相似文献   

6.
以偏氟乙烯和六氟丙烯共聚物为基体,通过与聚甲基丙烯酸甲酯共混,加入导电盐LiPFs、增塑剂聚乙烯吡咯烷酮,制备了高电导率的复合凝胶聚合物电解质(CGPE)。用红外光谱测试了聚合物电解质膜的结构,用交流阻抗法测试了CGPE的导电性能,用线性扫描伏安法研究了它的电化学稳定性。测试了以CGPE为电解质制备的锂离子电池的充放电性能。结果表明,当聚甲基丙烯酸甲酯(PMMA)质量分数为20%时,CGPE电导率大于10^-3s/cm,在4.65V电化学窗口以下稳定。以磷酸亚铁锂为正极时,在0.1C和0.2C倍率下放电时,聚合物电解质电池的首次放电容量分别为138mAh/g和98.3mAh/g。  相似文献   

7.
Olivine LiFePO4/C composite cathode materials were synthesized by a solid state method in N2 + 5vo1% H2 atmosphere.The effects of different iron sources,including Fe(OH)3 and FeC2O4·2H2O,on the performance of as-synthesized cathode materials were investigated and the causes were also analyzed.The crystal structure,the morphology,and the electrochemical performance of the prepared samples were characterized by X-ray diffractometry (XRD),scanning electron microscopy (SEM),laser particle-size distribution measurement,and other electrochemical techniques.The results demonstrate that the LiFePO4/C materials obtained from Fe(OH)3 at 800℃ and FeCeO4·2H2O at 700℃ have the similar electrochemical performances.The initial discharge capacities of LiFePO4/C synthesized from Fe(OH)3 and FeC2O4·2H2O are 134.5 mAh·g-1 and 137.4 mAh.g-1 at the C/5 rate,respectively.However,the tap density of the LiFePO4/C materials obtained from Fe(OH)3 are higher,which is significant for the improvement of the capacity of the battery.  相似文献   

8.
为了提高LiFePO4的电化学性能,用Mg2 对LiFePO4进行掺杂,以Li3PO4为锂源、Mg(OH)2为掺杂源,采用固相法合成锂离子电池正极材料Li1-xMgxFePO4(x=0.005、0.01、0.02和0.03).通过X射线衍射分析及电化学测试,研究了Mg掺杂对材料的结构和电化学性能的影响.实验研究表明,掺入少量的Mg2 ,可以减小晶胞体积,提高LiFePO4的循环性能和比容量.当Mg的掺入量为2 mol%时,以0.1C倍率充放电,Li0.98Mg0.02FePO4最大放电容量为123.6 mAh/g.  相似文献   

9.
用高温固相反应法制备Cu微粒包覆的锂离子电池正极材料Cu/LiFePO4。采用X射线衍射、场发射扫描电镜对材料的物相结构和颗粒形貌进行分析和观察,采用恒流充放电、慢扫描循环伏安法和电化学阻抗谱法测试材料的电化学性能。结果表明,Cu微粒包覆使复合材料颗粒分散更均匀,结晶更明显;Cu/LiFePO4(n(Cu)∶n(Li)=1∶15)正极材料首次放电比容量最高为142.8 mA.h/g,与纯LiFePO4正极材料的对应值151.7 mA.h/g相比有所下降;虽然Cu微粒的加入在一定程度上能够提高材料的电子导电率,但在第一周充电时Cu即发生不可逆氧化,导致该复合材料具有较低的放电比容量和较大的首次不可逆容量损失。  相似文献   

10.
采用循环伏安(CV)、电化学阻抗(EIS)和恒流充放电测试的方法研究了双乙二酸硼酸锂(LiBOB)电解液体系在常温下与正负极材料的兼容性及正极材料的倍率性能,并考察了乙腈(ACN)对LiBOB电解液体系电化学性能的影响.结果表明:正极材料LiFePO4在LiBOB电解液体系中,表现出良好的电化学性能,添加乙腈能够改善其充放电循环稳定性.负极材料SCMG(shape controlled micro-graphite)在LiBOB电解液体系中能够形成稳定有效的固体电解质界面(SEI)膜,且首次循环的可逆比容量略有提高,但乙腈的加入使循环的稳定性变差.  相似文献   

11.
PEI-PEO基全固态电解质的性能   总被引:1,自引:1,他引:0  
聚氧乙烯(PEO)基全固态复合电解质可作为高能全固态锂电池的电解质膜材料.采用溶液浇铸法,以PEO为基质,LiC1O4为锂盐,聚乙烯亚胺(PEI)和柠檬酸(CA)及无机纳米粉体(NCA)做性能改进剂,制备PEI-PEO-LiC1O4-CA-NCA全固态复合聚合物电解质(SCPE)膜,对其进行X射线衍射(XRD)表征和交...  相似文献   

12.
采用固相反应法合成了锂离子电池正极材料Li0.97Re0.01FePO4(Re=Er,Y,Gd,Nd,La),采用X射线衍射、恒电流充放试验对掺杂试样的微观结构和电化学性能进行测试。试验结果表明:掺杂稀土金属离子对LiFePO4的晶体结构没有影响,与LiFePO4相比,掺杂Er^3+,Y^3+,Gd^3+的试样具有优良的循环性能和倍率性能,而掺杂Nd^3+,La^3+的试样的循环性能和倍率性能较差。掺杂试样中,Li0.97Re0.01FePO4的电化学性能最佳,在C/10和1C(1C=120mA·g^-1)倍率下放电容量均最大。  相似文献   

13.
磷酸铁锂被认为是最有可能应用于锂离子动力电池的正极材料.采用化学研磨法制备了磷酸铁锂,并对其结构和电化学性能进行了研究.结果表明:相对于传统高温固相法,化学研磨法可以有效细化磷酸铁锂的颗粒和晶粒,所得材料0.1 C放电容量为132 mAh/g,明显高于传统固相法112 mAh/g的容量.  相似文献   

14.
采用固相烧结法,在惰性气氛下制备了橄榄石型LiFePO4/C正极材料.通过充放电循环实验、循环伏安实验、交流阻抗、拉曼光谱等现代手段,研究了样品的优化制备条件与电化学性能的关系.研究表明,在720℃烧结的样品以1C倍率电流充放电时,首次放电容量为113mAh/g,50循环的放电容量为116mAh/g,表现出优秀的循环稳定性.锂离子扩散系数为1.56×10^-8cm^2/s.在30循环内,样品的电荷传递阻抗随着充放电循环的进行逐渐减小.  相似文献   

15.
为了促进微机电系统封装技术的发展, 设计了应用聚氧化乙烯 (polyethylene oxide, PEO) 作为主体材料, 通过掺杂不同的锂盐获得聚合物固体电解质用于阳极键合进行封装.阳极键合对材料的要求主要是具有离子导电性, 因此采用X射线小角衍射 (small-angle X-ray scattering, SAXS) 和傅里叶红外光谱 (Fouriex transform infrared radiation spectroscopy, FTIR) 对设计的高分子固体电解质的导电机理进行分析.研究结果表明:LiClO4的离解能更小;锂离子的迁移数更多;随着其质量分数的增加, 电导率更高;通过键合结果发现, PEO-LiClO4和金属铝键合界面过渡层的产生是两者得以焊合的关键.  相似文献   

16.
利用AgNO3,AgBF4和[bmim]BF4,[bmim]PF6离子液体制备Ag+/离子液体"填充型"支撑液膜,用于苯/环己烷的蒸汽渗透,研究了离子液体的种类、银盐阴离子种类、操作温度及原料液中苯含量等因素对苯/环己烷混合体系的蒸汽渗透膜分离性能的影响.结果显示:AgNO3/[bmim][PF6]支撑液膜对等体积配比的苯/环己烷混合体系分离效果较佳,35℃时渗透通量为14.81 g/(m2·h),分离因子为36.59.  相似文献   

17.
通过Mg+金属掺杂及流变相制备方法来改善橄榄石结构的LiFePO4的电化学性能.研究了不同掺杂量和不同制备方法对材料结构性能和电化学性能的影响.SEM,XRD,以及电化学测试结果表明,Mg掺杂可以较大程度提高材料电化学性能;0.1 C倍率下首次充电容量达到140.7 mAh/g.利用流变相法制备的材料粒度更小,其电化学性能得到进一步提高,0.1 C时放电比容量达到了147.5 mAh/g.  相似文献   

18.
为改善纳米粒子在聚合物电解质中的分散效果,采用倒相制膜法,以纳米SiO2为填料,以OP-10为分散剂,制备复合微孔聚偏氟乙烯-六氟丙烯基电解质PVDF-HFP-SiO2(OP-10).用SEM、XRD、交流阻抗法等测试手段对电解质的微观形貌、内部结构和电化学相关性能等进行表征,结果表明:SiO2的加入降低了聚合物电解质膜的结晶度,增强了电解质的拉伸强度,提高了PVDF-HFP-SiO2(OP-10)聚合物电解质的电导率,在20 ℃时,可达到490×10-3 S·cm-1,电化学稳定窗口为53 V,电解质的离子迁移数为083.分散剂OP-10的加入改善了纳米SiO2与基质的界面相容性,改善了SiO2在基质中的分散度.  相似文献   

19.
以氯化胆碱(ChCl)、乙二醇(EG)和CrCl3·6H20制备的[ChCl—3EG]/CrCl3·6H2O低共熔溶剂型离子液体为电解液,在镍基阴极上电沉积出黑铬镀层.采用冰点测定仪、旋转式黏度计、电导率仪分别测定了该离子液体的熔点、黏度和电导率,以线性扫描伏安法测得[ChCl-3EG]离子液体的电化学窗口为3.22V.[ChCl-3EG]/CrCl3·6H2O离子液体的循环伏安曲线表明Cr^3+的电化学还原经历Cr^3+→Cr^2+和Cr^2+→Cr^0两步还原反应,起始还原电位分别为-0.26V和-1.06V,且两步均为不完全可逆过程;以电流密度为20mA/cm。于50℃下进行恒电流电沉积30min,对阴极沉积物的XRD和XPS测试表明,镀层成分铬原子百分比为Cr80.94%、Cr20319.06%.sEM和AFM测试表明,在[ChCl—3EG]/CrCl3·6H2O离子液体中可电沉积出平整、致密、无裂纹、表面粗糙度为5.56nm的黑铬镀层,电沉积铬的电流效率约为65.8%.  相似文献   

20.
类离子液体是近年发展起来的一种新型溶剂,它不仅具有离子液体独特的物理化学性能,还具有合成简单、价格低廉等优点,在电沉积铝技术方面具有广阔的应用前景。但目前相关的作用机制还未明确,而这些对于开发类离子液体电解生产铝和电解精炼铝的新工艺又至关重要。因此,本文以三氯化铝/尿素(AlCl3/urea)类离子液体为电解质,利用电导率仪、黏度计、线性扫描伏安法、场发射电子扫描显微镜(FE-SEM)和X射线衍射仪(XRD)等测试手段研究了AlCl3/urea类离子液体的物理化学性质、铝在电解质中的电化学行为以及铝沉积产物的形貌和物相结构。系统分析AlCl3/urea摩尔比和温度对体系电导率和黏度的影响,研究温度对铝离子析出电位、铝离子还原反应过程动力学、沉积铝形貌和结构的影响规律。结果表明,相同条件下,摩尔比为1.3:1的AlCl3/urea电解质电导率最大,黏度最小,物理化学性质较为优良,且其电导活化能为19.82kJ·mol-1。研究发现升温促进了电荷迁移反应,使得金属铝的析出电位正移,交换电流密度增大,说明较高的温度有利于加快Al(III)离子在铜基体上的还原。FE-SEM结果表明温度的变化对铝沉积产物的表观形貌影响不大,均由不规则的微米块体组成,但对粒径和致密性有一定影响。XRD结果分析表明晶粒的生长方式也受到了温度的影响,但都具有(111)晶面优先取向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号