首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
《Drying Technology》2007,25(10):1621-1632
A study was performed to determine the drying characteristics and quality of barley grain dried in a laboratory scale spouted-bed dryer at 30, 35, 40, and 45°C and an inlet air velocity of 23 m/s-1, and in an IR-convection dryer under an infrared radiation intensity of 0.048, 0.061, 0.073, and 0.107 W cm-2 at an air velocity of 0.5 m/s-1. The results show that the first, relatively short, phase of a sharp decrease in the drying rate was followed by the phase of a slow decrease. The time of barley drying depended on temperature of inlet air in a spouted-bed dryer and on radiation intensities in an IR-convection dryer. Barley drying at 45°C in a spouted-bed dryer was accompanied by the lowest total energy consumption. The average specific energy consumption was lower and the average efficiency of drying was higher for drying in a spouted-bed dryer. The effective diffusivities were in the range 2.20-4.52 × 10-11 m2 s-1 and 3.04-4.79 × 10-11 m2/s-1 for barley dried in a spouted-bed and in an IR-convection dryer, respectively. There were no significant differences in kernel germination energy and capacity between the two drying methods tested.  相似文献   

2.
The residence times of the components of two- and three-component mixtures of fine (195 µm), coarse (1315 µm) and very coarse (5040 µm) sands were measured in a pilot-scale cascading rotary dryer. The effects of mixture composition and air velocity (0-5.4 m s-1) were determined. With no air flowing through the drum, the residence times of the individual components were almost the same as that of the overall mixture. Increasing the gas velocity caused a large decrease in residence time. In contrast, particle size had very little effect. The spread of residence times increased with air velocity, peaking between 2 and 4 m s-1; composition had very little effect on the spread. The residence time of the overall mixture could be calculated using the particle transport model of Matchett and Baker if both the modified drag coefficient Φd and the particle Reynolds number Rep were based on the superficial air velocity and the mass-average particle diameter.  相似文献   

3.
《Drying Technology》2007,25(2):379-389
This article describes the analysis of heat and mass transfer coefficients for a single board of Pinus radiata (D. Don) timber over a range of high temperature and superheated steam drying conditions. The calculated heat transfer coefficients were in the range 20 to 60 W m-2 K-1. The mass transfer coefficients were of the order of 2 × 10-8 to 3 × 10-7 kg m-2 s-1, based on the vapor pressure difference, and of the order of 0.002 to 0.04 m s-1 (expressed in terms of mass transfer velocity) based on vapor concentration difference between the surface of the board and the bulk drying medium.  相似文献   

4.
Freshly harvested rosehips (Rosa canina L.) were dehydrated in a parallel flow type air dryer at six air temperatures (30, 40, 50, 60, and 70°C) at air velocities of 0.5, 1.0, and 1.5 m/s. Drying air temperature and velocity significantly influenced drying time and energy requirement. Minimum and maximum energy requirement for drying of rosehips were determined as 6.69 kWh/kg for 70°C at 0.5 m/s, and 42.46 kWh/kg for 50°C, 1.5 m/s. In order to reduce drying energy consumption, it is recommended that the drying air velocity must not be more than 0.5 m/s and drying air temperature should be 70°C. In addition, the influence of drying air temperature and air velocity on the color of dried rosehip has been studied. Hunter L, a, b values were used to evaluate changes in the total color difference (ΔE) on dried rosehips. 70°C drying air temperature and 1 m/s air velocity were found to yield better quality product.  相似文献   

5.
A model is presented for drying of a single porous particle with superheated steam and humid air. Experimental data for spherical porous ceramic particle reported in the literature were used for the validation of the model. An inversion temperature at which the evaporation rates within superheated steam and humid air are equal was predicted. The effect of thermophysical properties of the particle (permeability 10-14 - 10-17 m2, diameter 3 × 10-3 - 10 × 10-3 m) and operating variables (gas mass flux 0.26 - 0.78 kg m-2 s-1, drying agent temperature 120-200°C) is tested. The inversion temperature is shown to be affected by the thermophysical properties of the porous particle and of the drying agent.  相似文献   

6.
Thin Layer Drying Models for Osmotically Pre-dried Young Coconut   总被引:2,自引:0,他引:2  
Thin layer convection drying was performed on osmotically pre-dried young coconut, strips, both thin and thick. A drying air temperature range of 50-70°C and an airflow of 0.25 m s-1 was used to dry samples soaked in three sugar solution concentrations (40, 50, and 60°B) during the osmotic drying phase, with the convection drying alone serving as control. An analysis of variance (ANOVA) revealed that sugar concentration and thickness significantly affected osmotic drying rates as shown by their final moisture contents. While the drying air temperature and slab thickness significantly affected the average drying rate and the sugar concentration was an insignificant factor during convective drying phase. Effective diffusivity of water during hot air drying varied from 1.71 to 5.51 × 10-10 m2s-1 over the temperature range investigated, with energy of activation equal to 1173.0 kJ/kg. Three mathematical models available in the literature were fitted to the experimental data, with the Page model giving better predictions than the single or double term exponential model. The temperature dependence of the diffusivity coefficients was satisfactorily described by a simple Arrhenius type relationship.  相似文献   

7.
《Drying Technology》2007,25(10):1633-1638
  相似文献   

8.
A SINGLE-LAYER MODEL FOR FAR-INFRARED RADIATION DRYING OF ONION SLICES   总被引:1,自引:0,他引:1  
J. Wang 《Drying Technology》2002,20(10):1941-1953
  相似文献   

9.
A. L  pez  M.T. Piqu    J. Boatella  A. Ferr  n  J. Garcia  A. Romero 《Drying Technology》1998,16(3):627-649
Equilibrium moisture content isotherms for Spanish hazelnut (Corylus avellana L.) at different temperatures (30°C-80°C) were determined using static gravimetric method. Thin layer drying experiments were done with forced air circulation and were conducted with different operating conditions to determine the drying characteristics of hazelnuts. The effect of air temperature (30°C-70°C), air velocity (0.5 m/s - 2 m/s) and drying bed loading density (50 kg/m2 - 150 kg/m2) on drying of unshelled and shelled hazelnuts was studied. Six mathematical models were used to fit the experimental equilibrium moisture content data, from which the G.A.B. model was found to give the best fit. Diffusion coefficients were determined by fitting experimental thin-layer drying curves to the Fick's diffusion model. Variation of the effective diffusion coefficient with temperature was of the Arrhenius type. The Page equation was found to describe adequately the thin layer drying of hazelnut. Page equation drying parameters k and n were correlated with air temperature and relative humidity.  相似文献   

10.
This article presents experimental and modeled drying kinetics of potato slices of the Desiree variety (9 × 9 × 3 mm3) in a pulsed fluid bed as a function of the air velocity, air temperature, and rotating disk velocity of the pulse generator. A statistical multifactor experimental design (23) was applied to analyze the drying process with two levels each of drying temperature, air velocity, and rotating disk velocity. The results showed that the significant factors were air temperature, air velocity, rotating disk velocity, and the binary interactions of air velocity with both the temperature and the rotating disk velocity. The simplified variable diffusivity model (SVDM) gave the least deviation for the experimental data. The effective diffusivity values determined in this work are similar to those reported in the literature.  相似文献   

11.
Drying of lightly salted sardine (Sardinella aurita) was accomplished using three air temperatures (35°C, 40°C, 50°C) and three air velocities (0.5 m/s, 1.5 m/s, 2 m/s); the effects of drying conditions on drying kinetics were studied. As for all biological products, air temperature is the main factor influencing the drying kinetics. However, over a given temperature which seems to correspond to protein modification (50°C), and at a high air flow rate (2 m/s and 2.5 m/s) a crust formation on the surface of the fish, due to the combined effect of heat and salt was observed. This phenomenon inhibited the drying rate. From the drying curves, two falling rate periods were observed. The dimensionless drying rate versus a dimensionless moisture content data were regressed by the Marquardt Levenberg non-linear optimization method to obtain an empirical equation describing the salted sardine characteristic drying curve.  相似文献   

12.
The moisture diffusivities and moisture transfer coefficients characterising the drying of pharmaceutical powders were determined using a correlation proposed by Dincer et al. (2002, Development of a new drying correlation for practical applications. International Journal of Energy Research 26, 245-251). Experimental moisture content data for lactose, Aspirin and Paracetamol samples dried under convective, microwave, combined convective-microwave and combined vacuum-microwave conditions were obtained. The drying coefficients and lag factors were determined from the experimental measurements and incorporated into the model. The mass transfer Bi numbers were found to be in the range 0.058 to 0.194, indicating the presence of finite internal and external resistances. Moisture diffusivity and diffusion coefficient values in the range 0.135 × 10-9 to 102 × 10-9 m2 s-1 and 0.067 × 10-7 to 8.21 × 10-7 ms-1 respectively, were calculated. The predicted moisture profiles showed adequate agreement with the experimental observations, with the average error between experimental and predicted results being ± 15.9%.  相似文献   

13.
The concept of the product moisture locus was tested in this work using a pilot-scale modified Niro spray dryer (diameter 0.8 m, height 2 m), where the residence time of the particles inside this spray dryer is lower compared with larger industrial spray dryers. The moisture contents of skim milk powder produced from spray drying skim milk (solids content 8.8% w/v) at different operating conditions, namely different swirl vane angles (0°, 25°, 30°), inlet air temperatures (170°C, 200°C, 230°C) and process fluid flowrates (1.4 kg h-1, 1.6 kg h-1, 1.8 kg h-1), were compared with the predicted equilibrium moisture contents. In addition, the residence time of the particles was also increased in the spray dryer by decreasing the inlet air mass flowrate from 0.016 to 0.013 kg s-1. The outlet moisture contents of the skim milk powder for all the 23 runs carried out in this work were within 0.4% of the equilibrium values. Thus, the skim milk powder particles were in close equilibrium with the gas inside the drying chamber. These equilibrium limitations are confirmed by other literature data (Boonyai, P. Comparative Evaluation of Soymilk Drying in a Spray Dryer and Spouted Bed of Inert Particles. M.Sc. Thesis. Asian Institute of Technology: Bangkok, Thailand, 2000; 90 pp; Harvie, D.J.E.; Langrish, T.A.G.; Fletcher, D.F. A computational fluid dynamics study of a tall-form spray dryer. Trans IChemE 2002, in press). The use of this finding to predict spray dryer performance is demonstrated by mass and energy balance calculations.  相似文献   

14.
Desirable flavor qualities of cocoa are dependent on how the cocoa beans are fermented, dried, and roasted. During fermentation and drying, polyphenols such as leucocyanidin and apecatechin are oxidized by polyphenols oxidase to form o-quinone, which later react nonenzymatically with a hydroquinone in a condensation reaction to form browning products and moisture. The objective of this article is to model the cocoa beans drying together with the browning reaction. A Luikov drying model for the moisture and a simple Fick's law diffusion model combined with first-order reactions for both the enzymatic oxidation and nonenzymatic condensation reactions were constructed. Both models were used to identify moisture diffusivity coefficient and total polyphenols diffusivity in cocoa beans from experimental drying and polyphenols degradation data and published kinetic data of the reactions. The theoretical drying model fitted the experimental cocoa bean drying curves with low mean square of residuals. The polyphenols diffusion and reaction model also fitted the experimental polyphenols degradation curves with minimum mean residual squares. The rate of polyphenols degradation in the cocoa beans increases at higher temperature and higher relative humidity. This is because the increasing reaction rate of polyphenols oxidation reaction as well as higher moisture diffusion at higher relative humidity and temperature. The effective moisture diffusivity in cocoa beans is estimated to be between 8.194 × 10-9 and 8.542 × 10-9 m2·s-1, which is of the same order of magnitude as published data. The effective total polyphenols diffusivity is estimated to be between 8.333 × 10-12 to 1.000 × 10-11 m2·s-1 with minimum mean residual squares. It is three orders of magnitude less than the estimated moisture diffusivity because of the larger polyphenols molecules. The estimated polyphenols diffusivity is very close to those published in the literature for sorption and ultrafiltration processes.  相似文献   

15.
Estimation of Effective Moisture Diffusivity of Okra for Microwave Drying   总被引:2,自引:0,他引:2  
G  k  e Dadal&#x 《Drying Technology》2007,25(9):1445-1450
The effect of microwave output power and sample amount on effective moisture diffusivity were investigated using microwave drying technique on round okra (Hibiscus esculentus L.). The various microwave output powers ranging from 180 to 900 W were used for the determination of effective moisture diffusivity for constant sample amount of 100 g okra. To examine the effect of sample amount on effective moisture diffusivity, the samples in the range of 25-100 g were dried at constant microwave output power of 360 W. By increasing the microwave output powers and decreasing the sample amounts, the effective moisture diffusivity values ranged from 20.52 × 10-10 to 86.17 × 10-10 and 34.87 × 10-10 to 11.91 × 10-9 m2/s-1, respectively. The modeling studies were performed to illustrate the relationship between the ratio of the microwave output power to sample amount and effective moisture diffusivity. The relationship between drying constant and effective moisture diffusivity was also estimated.  相似文献   

16.
《Drying Technology》2008,26(3):283-289
The aim of this work is to develop a mathematical model to estimate the batch drying curve of coriander seeds in an impingement dryer and to study the axial movement of a seed in a transparent prototype impingement dryer. The apparatus is a horizontal acrylic transparent cylinder with a slight slope to induce the axial and rotational movement of particles. Gas enters tangentially downwards through a narrow slot arranged all along the dryer, flows in a counterclockwise circular motion in the chamber—in crossflow with respect to the solids—and is discharged through an upper lengthwise expansion chamber. As a result of gas drag, the particles advance in a rotational-helicoidal motion between feed and discharge.

Velocity and temperature profiles for gas in 2D turbulent flow were simulated using commercial software from Fluent Inc.[1,4] Maximum velocities are shown to be located close the walls; most of the gas is recirculated, and the rest is exhausted. It is assumed that particle trajectories also follow a circular motion near the walls, as observed in the transparent reproduction of the dryer operating with ambient air for small batch of solids and/or a single particle. Air velocities along this trajectory are estimated from the simulated flow field. Particle motion, heating, and drying along this path are described by unsteady momentum, heat, and mass balances when subjected to gas drag and gravity forces.

With respect to the axial trajectory of a coriander seed, for an inlet air velocity of 20 m/s at the slot the average experimental time for a complete circular cycle is 0.18 s and the simulated time is 0.21 s, whereas average experimental residence time is 1.53 s and the simulated time is 0.94 s. Differences between experimental results and simulations are due to air instability, leading to nonhomogeneous air velocity profiles along the equipment. The mathematical model is based on the assumption that air velocity profiles are homogeneous. Experimental observations indicate that the particle does not move along the equipment but sometimes moves backward (or erratically) or spins out advancing, due to an uneven air speed profile, and impacts against the wall. Finally, the drying model gives results that adjust to the batch experimental data, taking into account the deviations found with respect to the axial trajectory from a seed. This is because the model was devised exactly to predict the conduct of the system in batch operation for a particle bed, obtaining results that show the macrocospic response of the equipment (velocity and average temperature of the air). As it happens in this type of phenomenon, the drying rate in the constant period is a function of the adimensional Reynolds number.  相似文献   

17.
The influence of pulsed electric field (PEF) and subsequent centrifugal osmotic dehydration (OD) on the convective drying behavior of carrot is investigated. The PEF was carried out at an intensity of E = 0.60 kV/cm and a treatment duration of tPEF = 50 ms. The following centrifugal OD was performed in a sucrose solution of 65% (w/w) at 40°C for 0, 1, 2, or 4 h under 2400 × g. The drying was performed after the centrifugal OD for temperatures 40-60°C and at constant air rate (6 m3/h).

With the increase of OD duration the air drying time is reduced spectacularly. The dimensionless moisture ratio Xr = 0.1 is reached for PEF-untreated carrots after 370 min of air drying at 60°C in absence of centrifugal OD against 90 min of air drying after the 240 min of centrifugal OD. The PEF treatment reduces additionally the air drying time. The total time of dehydration operations can be shortened when OD time is optimized. For instance, the minimal time required to dehydrate untreated carrots until Xr = 0.1 is 260 min (120 min of OD at 40°C and 140 min of drying at 60°C). It is reduced to 230 min with PEF-treated carrots.

The moisture effective diffusivity Deff is calculated for the convective air drying based on Fick's law. The centrifugal OD pretreatment increases drastically the value of Deff. For instance, 4 h of centrifugal OD permitted increasing the value of Deff from 0.93 · 10-9 to 3.85 · 10-9 m2/s for untreated carrots and from 1.17 · 10-9 to 5.10 · 10-9 m2/s for PEF-treated carrots.  相似文献   

18.
Experiments were carried out in a solar simulator to study the influence of air temperature (25-40°C), air relative humidity (40-80%), air velocity (0.95-2.2 m/s), radiation intensity (0-916 W/m2), and loading density (10-30 kg/m2) on the drying rate of a bed of cassava chips (2×2×2 cm). Well-known thin-layer drying equations were fitted to the experimental data, and the empirical constants were used in a statistical analysis of the influence of process conditions on the drying rate. The air temperature, air velocity, radiation intensity, and loading density influenced the drying rate significantly (p=0.05). The effects of the air temperature and the radiation intensity were attributed to the temperature-dependent diffusion of moisture within the chips, while the effect of the air velocity was ascribed to the resistance to mass transfer at the air-chip interface. Equations were presented to express the empirical constants as functions of the process variables.  相似文献   

19.
A conveyor-belt dryer for picrite has been modeled mathematically in this work. The necessary parameters for the system of equations were obtained from regression analysis of thin-layer drying data. The convective drying experiments were carried out at temperatures of 40, 60, 80, and 100°C and air velocities of 0.5 and 1.5 m/sec. To analyze the drying behavior, the drying curves were fitted to different semi-theoretical drying kinetics models such as those of Lewis, Page, Henderson and Pabis, Wang and Singh, and the decay models. The decay function (for second order reactions) gives better results and describes the thin layer drying curves quite well. The effective diffusivity was also determined from the integrated Fick's second law equation and correlated with temperature using an Arrhenius-type model. External heat and mass transfer coefficients were refitted to the empirical correlation using dimensionless numbers (Jh, JD = m · Ren) and their new coefficients were optimized as a function of temperature. The internal mass transfer coefficient was also correlated as a function of moisture content, air temperature, and velocity.  相似文献   

20.
A two-dimensional mathematical model developed for vacuum-contact drying of wood was adapted to simulate superheated steam vacuum drying. The moisture and heat equations are based on the water potential concept whereas the pressure equation is formulated considering unsteady-state mass conservation of dry air. A drying test conducted on sugar maple sapwood in a laboratory vacuum kiln was used to infer the convective mass and heat transfer coefficients through a curve fitting technique. The average air velocity was 2.5 m s-1 and the dry-bulb temperature varied between 60 and 66°C. The ambient pressure varied from 15 to 11 kPa. Simulation results indicate that heat and mass transfer coefficients are moisture content dependent. The simulated drying curve based on transfer coefficients calculated from boundary layer theory poorly fits experimental results. The functional relation for the relative permeability of wood to air is a key parameter in predicting the pressure evolution in wood in the course of drying. In the case of small vacuum kilns, radiant heat can contribute substantially to the total heat transfer to the evaporative surface at the early stages of drying. As for conventional drying, the air velocity could be reduced at the latter stage of drying with little or no change to the drying rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号