首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lidar provides enhanced abilities to remotely map leaf area index (LAI) with improved accuracies. We aim to further explore the capability of discrete-return lidar for estimating LAI over a pine-dominated forest in East Texas, with a secondary goal to compare the lidar-derived LAI map and the GLOBCARBON moderate-resolution satellite LAI product. Specific problems we addressed include (1) evaluating the effects of analysts and algorithms on in-situ LAI estimates from hemispherical photographs (hemiphoto), (2) examining the effectiveness of various lidar metrics, including laser penetration, canopy height and foliage density metrics, to predict LAI, (3) assessing the utility of integrating Quickbird multispectral imagery with lidar for improving the LAI estimate accuracy, and (4) developing a scheme to co-register the lidar and satellite LAI maps and evaluating the consistency between them. Results show that the use of different analysts or algorithms in analyzing hemiphotos caused an average uncertainty of 0.35 in in-situ LAI, and that several laser penetration metrics in logarithm models were more effective than other lidar metrics, with the best one explaining 84% of the variation in the in-situ LAI (RMSE = 0.29 LAI). The selection of plot size and height threshold in calculating laser penetration metrics greatly affected the effectiveness of these metrics. The combined use of NDVI and lidar metrics did not significantly improve estimation over the use of lidar alone. We also found that mis-registration could induce a large artificial discrepancy into the pixelwise comparison between the coarse-resolution satellite and fine-resolution lidar-derived LAI maps. By compensating for a systematic sub-pixel shift error, the correlation between two maps increased from 0.08 to 0.85 for pines (n = 24 pixels). However, the absolute differences between the two LAI maps still remained large due to the inaccuracy in accounting for clumping effects. Overall, our findings imply that lidar offers a superior tool for mapping LAI at local to regional scales as compared to optical remote sensing, accuracies of lidar-estimate LAI are affected not only by the choice of models but also by the absolute accuracy of in-situ reference LAI used for model calibration, and lidar-derived LAI maps can serve as reliable references for validating moderate-resolution satellite LAI products over large areas.  相似文献   

2.
Airborne discrete-return light detection and ranging (lidar) can be used to estimate leaf area index (LAI) with relatively high accuracy. This capacity was explored with regard to assessing the capability of estimating LAI at different heights at the plot level, in the presence of understorey vegetation, within intensively managed Loblolly pine forest in North Carolina, USA. Field measurements utilized the LI-COR LAI-2200 plant canopy analyser for field-based estimates of effective LAI at three elevations within each plot; these were on the ground (0.0 m) and 1.0 m and 2.5 m above the ground within the various understorey heights and densities. A number of new and previously existing lidar metrics and indices were calculated from the distribution of return heights, which have been identified as potentially strong predictors of LAI. A bivariate and stepwise regression approach was then applied to create models for the estimation of LAI from lidar-derived height distribution metrics. The results show that specific logarithm transformed laser penetration indices calculated using a height threshold (e.g. the number of returns below 2.5 m ratioed against all returns) as close to field LAI measurement height (e.g. 2.5 m) was more effective than other lidar metrics. LAI can be estimated for each of the three measurement heights within the understorey component explaining 67 to 76% of the variance (root mean square error 0.42–0.57). The indices that produced the highest correlations and which were selected in stepwise regression analysis were calculated using all returns. The results indicate that LAI can be estimated accurately using lidar data in pine plantation forest over a variety of stand conditions.  相似文献   

3.
Vegetation structure retrieval accuracies from spaceborne Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat) data are affected by surface topography, background noise and sensor saturation. This study uses a physical approach to remove surface topography effect from lidar returns to retrieve vegetation height from ICESat/GLAS data over slope terrains. Slope-corrected vegetation heights from ICESat/GLAS data were compared to airborne Laser Vegetation Imaging Sensor (LVIS) (20 m footprint size) and small-footprint lidar data collected in White Mountain National Forest, NH. Impact of slope on LVIS vegetation height estimates was assessed by comparing LVIS height before and after slope correction with small-footprint discrete-return lidar and field data.Slope-corrected GLAS vegetation heights match well with 98 percentile heights from small-footprint lidar (R2 = 0.77, RMSE = 2.2 m) and top three LVIS mean (slope-corrected) heights (R2 = 0.64, RMSE = 3.7 m). Impact of slope on LVIS heights is small, however, comparison of LVIS heights (without slope correction) with either small footprint lidar or field data indicates that our scheme improves the overall LVIS height accuracy by 0.4-0.7 m in this region. Vegetation height can be overestimated by 3 m over a 15° slope without slope correction. More importantly, both slope-corrected GLAS and LVIS height differences are independent of slope. Our results demonstrate the effectiveness of the physical approach to remove surface topography from large footprint lidar data to improve accuracy of maximum vegetation height estimates.GLAS waveforms were compared to aggregated LVIS waveforms in Bartlett Experimental Forest, NH, to evaluate the impact of background noise and sensor saturation on vegetation structure retrievals from ICESat/GLAS. We found that GLAS waveforms with sensor saturation and low background noise match well with aggregated LVIS waveforms, indicating these waveforms capture vertical vegetation structure well. However, waveforms with large noise often lead to mismatched waveforms with LVIS and underestimation of waveform extent and vegetation height. These results demonstrate the quality of ICESat/GLAS vegetation structure estimates.  相似文献   

4.
Habitat heterogeneity has long been recognized as a fundamental variable indicative of species diversity, in terms of both richness and abundance. Satellite remote sensing data sets can be useful for quantifying habitat heterogeneity across a range of spatial scales. Past remote sensing analyses of species diversity have largely been limited to correlative studies based on the use of vegetation indices or derived land cover maps. A relatively new form of laser remote sensing (lidar) provides another means to acquire information on habitat heterogeneity. Here we examine the efficacy of lidar metrics of canopy structural diversity as predictors of bird species richness in the temperate forests of Maryland, USA. Canopy height, topography and the vertical distribution of canopy elements were derived from lidar imagery of the Patuxent National Wildlife Refuge and compared to bird survey data collected at referenced grid locations. The canopy vertical distribution information was consistently found to be the strongest predictor of species richness, and this was predicted best when stratified into guilds dominated by forest, scrub, suburban and wetland species. Similar lidar variables were selected as primary predictors across guilds. Generalized linear and additive models, as well as binary hierarchical regression trees produced similar results. The lidar metrics were also consistently better predictors than traditional remotely sensed variables such as canopy cover, indicating that lidar provides a valuable resource for biodiversity research applications.  相似文献   

5.
The accuracy of lidar remote sensing in characterizing three-dimensional forest structural attributes has encouraged foresters to integrate lidar approaches in routine inventories. However, lidar point density is an important consideration when assessing forest biophysical parameters, given the direct relationship between higher spatial resolution and lidar acquisition and processing costs. The aim of this study was to investigate the effect of point density on mean and dominant tree height estimates at plot level. The study was conducted in an intensively managed Eucalyptus grandis plantation. High point density (eight points/m2) discrete-return, small-footprint lidar data were used to generate point density simulations averaging 0.25, one, two, three, four, five, and six points/m2. Field surveyed plot-level mean and dominant heights were regressed against metrics derived from lidar data at each simulated point density. Stepwise regression was used to identify which lidar metrics produced the best models. Mean height was estimated at accuracy of R2 ranging between 0.93 and 0.94 while dominant height was estimated with an R2 of 0.95. Root mean square error (RMSE) was also similar at all densities for mean height (~1.0 m) and dominant height (~1.2 m); the relative RMSE compared to field-measured mean was constant at approximately 5%. Analysis of bias showed that the estimation of both variables did not vary with density. The results indicated that all lidar point densities resulted in reliable models. It was concluded that plot-level height can be estimated with reliable accuracy using relatively low density lidar point spacing. Additional research is required to investigate the effect of low point density on estimation of other forest biophysical attributes.  相似文献   

6.
Riparian forest zones adjacent to surface water such as streams, lakes, reservoirs and wetlands maintain significant forest ecosystem functions including nutrient cycling, vegetative communities, water quality, fish and wildlife habitat and landscape aesthetics. In order to support the sustainable management of riparian forests, riparian zones should first be carefully delineated and then structural properties of riparian vegetation, especially forest trees, should be accurately measured. Geographical information system (GIS) techniques have been previously implemented to determine riparian zones quickly and reliably. However, basic measurements of forest structures in riparian areas have relied heavily on field-based surveys, which can be extremely time consuming in large areas. In this study, riparian forest zones were initially located using GIS techniques and then airborne lidar (light detection and ranging) data were used to determine and analyse structural properties (i.e. tree height, crown diameter, canopy closure and vegetation density) of a sample riparian forest. Lidar-derived tree height and crown diameter measurements of sample trees were compared with field-based measurements. Results indicated that 77.92% of the riparian area in the study area was covered by forest. Based on lidar-derived data, the average tree height, total crown width, canopy closure (above 3 m) and vegetation density (3–15 m) were found to be 74.72 m, 16.82 m, 71.15% and 26.05%, respectively. Although we found differences between measurement methods, lidar-derived riparian tree measurements were highly correlated with field measurements for tree height (R 2?=?88%) and crown width (R 2?=?92%). Differences between measurement methods were likely a result of difficulties associated with field measurements in the dense vegetation that is often associated with forested riparian areas.  相似文献   

7.
Focusing on the semi-arid and highly disturbed landscape of San Clemente Island (SCI), California, we test the effectiveness of incorporating a hierarchical object-based image analysis (OBIA) approach with high-spatial resolution imagery and canopy height surfaces derived from light detection and ranging (lidar) data for mapping vegetation communities. The hierarchical approach entailed segmentation and classification of fine-scale patches of vegetation growth forms and bare ground, with shrub species identified, and a coarser-scale segmentation and classification to generate vegetation community maps. Such maps were generated for two areas of interest on SCI, with and without vegetation canopy height data as input, primarily to determine the effectiveness of such structural data on mapping accuracy. Overall accuracy is highest for the vegetation community map derived by integrating airborne visible and near-infrared imagery having very high spatial resolution with the lidar-derived canopy height data. The results demonstrate the utility of the hierarchical OBIA approach for mapping vegetation with very high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accurately mapping vegetation communities within highly disturbed landscapes.  相似文献   

8.
Quantifying forest structure is important for sustainable forest management, as it relates to a wide variety of ecosystem processes and services. Lidar data have proven particularly useful for measuring or estimating a suite of forest structural attributes such as canopy height, basal area, and LAI. However, the potential of this technology to characterize forest succession remains largely untested. The objective of this study was to evaluate the use of lidar data for characterizing forest successional stages across a structurally diverse, mixed-species forest in Northern Idaho. We used a variety of lidar-derived metrics in conjunction with an algorithmic modeling procedure (Random Forests) to classify six stages of three-dimensional forest development and achieved an overall accuracy > 95%. The algorithmic model presented herein developed ecologically meaningful classifications based upon lidar metrics quantifying mean vegetation height and canopy cover, among others. This study highlights the utility of lidar data for accurately classifying forest succession in complex, mixed coniferous forests; but further research should be conducted to classify forest successional stages across different forests types. The techniques presented herein can be easily applied to other areas. Furthermore, the final classification map represents a significant advancement for forest succession modeling and wildlife habitat assessment.  相似文献   

9.
An integrated remote sensing/field ecology project linked the use of synthetic aperture radar (SAR) and aerial photography to studies of landscape spatial heterogeneity and bird community ecology. P-, L-, and C-band SAR data, collected over a section of Kakadu National Park in Australia's Northern Territory during the Joint NASA/Australia DC-8 data acquisition campaign, were analyzed in light of field data integrating vegetation structure and floristics with bird abundances across a heterogeneous study site. Results indicate that SAR data are able to discern structural differences relevant to bird habitat quality within floristically homogeneous stands, while multispectral sensors successfully identified floristic differences among habitat types. Simplifying indices of bird diversity showed ambiguous changes across the site; however, the abundances of individual species were observed to change significantly across both floristic and structural gradients. These results suggest that efforts to map bird diversity should focus on species-specific habitat relationships and that some measure of vegetation structure is needed to understand bird habitat. The approach employed here advances the use of SAR data in the three-dimensional mapping of animal habitats from remotely sensed data, and extends current capabilities for mapping and modeling large-scale patterns in the distribution of biological diversity.  相似文献   

10.
The use of lidar remote sensing for mapping the spatial distribution of canopy characteristics has the potential to allow an accurate and efficient estimation of tree dimensions and canopy structural properties from local to regional and continental scales. The overall goal of this paper was to compare biomass estimates and height metrics obtained by processing GLAS waveform data and spatially coincident discrete-return airborne lidar data over forest conditions in east Texas. Since biomass estimates are derived from waveform height metrics, we also compared ground elevation measurements and canopy parameters. More specific objectives were to compare the following parameters derived from GLAS and airborne lidar: (1) ground elevations; (2) maximum canopy height; (3) average canopy height; (4) percentiles of canopy height; and (5) above ground biomass. We used the elliptical shape of GLAS footprints to extract canopy height metrics and biomass estimates derived from airborne lidar. Results indicated a very strong correlation for terrain elevations between GLAS and airborne lidar, with an r value of 0.98 and a root mean square error of 0.78 m. GLAS height variables were able to explain 80% of the variance associated with the reference biomass derived from airborne lidar, with an RMSE of 37.7 Mg/ha. Most of the models comparing GLAS and airborne lidar height metrics had R-square values above 0.9.  相似文献   

11.
Airborne laser scanner systems provide detailed forest information that can be used for important improvements in forest management decisions. Planning systems under development use plot-survey data to represent forest stands in large forest holdings which enables new flexible methods to model the forest and optimize selection of silvicultural treatments. In Sweden today, only averages of forest stand variables are used, and the survey methods used do not provide plot-survey data for all stands in large forest holdings. This is a task possibly solved using airborne laser scanner data. Various measures can be derived from laser data, each describing different forest variables, such as tree height distribution, vegetation density and vertical tree crown structure. Here, imputation of field plot (10 m radius) data using measures derived from airborne laser scanner data (TopEye) and optical image data (SPOT 5 HRG satellite sensor) were evaluated as a method to provide data for new long-term management planning systems. In addition to commonly applied measures, the semivariogram of laser measurements was evaluated as a new measure to extract spatial characteristics of the forest. The study used data from 870, 10 m radius field plots (0 to 812 m3 ha− 1) surveyed for a 1200 ha large forest estate in the south of Sweden. At the best, combining measures derived from laser scanner data and SPOT 5 data, stand mean volume was estimated with a root mean square error (RMSE) of 20% of the sample mean and stem density with 22% RMSE. Bias of stem density estimates was 5%, and stand stem volume 4%. Although these accuracies are sufficient for operational application, estimates of tree species proportions and within-stand variation were clearly not.  相似文献   

12.
Effective leaf area index (LAI) retrievals from a scanning, ground-based, near-infrared (1064 nm) lidar that digitizes the full return waveform, the Echidna Validation Instrument (EVI), are in good agreement with those obtained from both hemispherical photography and the Li-Cor LAI-2000 Plant Canopy Analyzer. We conducted trials at 28 plots within six stands of hardwoods and conifers of varying height and stocking densities at Harvard Forest, Massachusetts, Bartlett Experimental Forest, New Hampshire, and Howland Experimental Forest, Maine, in July 2007. Effective LAI values retrieved by four methods, which ranged from 3.42 to 5.25 depending on the site and method, were not significantly different (β < 0.1 among four methods). The LAI values also matched published values well. Foliage profiles (leaf area with height) retrieved from the lidar scans, although not independently validated, were consistent with stand structure as observed and as measured by conventional methods. Canopy mean top height, as determined from the foliage profiles, deviated from mean RH100 values obtained from the Lidar Vegetation Imaging Sensor (LVIS) airborne large-footprint lidar system at 27 plots by − 0.91 m with RMSE = 2.04 m, documenting the ability of the EVI to retrieve stand height. The Echidna Validation Instrument is the first realization of the Echidna® lidar concept, devised by Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO), for measuring forest structure using full-waveform, ground-based, scanning lidar.  相似文献   

13.
In the past decade, lidar (light detection and ranging) has emerged as a powerful tool for remotely sensing forest canopy and stand structure, including the estimation of aboveground biomass and carbon storage. Numerous papers have documented the use of lidar measurements to predict important aspects of forest stand structure, including aboveground biomass. Other papers have documented the ability to transform lidar measurements to approximate common field measures, such as cover, stand height, and vertical distributions of foliage density and light transmittance. However, only a small number of existing works have thoroughly examined relationships between comprehensive assemblages of forest canopy and forest stand structure indices. In this work, canonical correlation analysis of coincident lidar and field datasets in western Oregon and Washington is used to define seven statistically significant pairs of canonical variables, each defining an axis of variation that stand and canopy structure have in common. The first major axis relates mean stand height, and related variables, to aboveground biomass. The second relates canopy cover and volume to leaf area index and stem density. The third relates canopy height variability to mean stem diameter and the basal area of deciduous species. Of the four remaining axes, three are related to contrasts between mature and old-growth stands. Canonical correlation analysis provides a method for ranking the importance of these effects, and for placing both canopy and stand structure indices within the overall covariance structure of the two datasets. In this sense, and for the study area involved, the first three factors (mean height, cover or leaf index area, height variability) represent the same kind of enhancement of lidar data that the tasseled cap indices [Crist, C.P., R.C. Cicone, 1984. A physically-based transformation of thematic mapper data—the TM tasseled cap. IEEE Transactions on Geoscience and Remote Sensing 22, 256-263.] represent for optical remote sensing.  相似文献   

14.
Tropical forests are an important component of the global carbon balance, yet there is considerable uncertainty in estimates of their carbon stocks and fluxes, which are typically estimated through analysis of aboveground biomass in field plots. Remote sensing technology is critical for assessing fine-scale spatial variability of tropical forest biomass over broad spatial extents. The goal of our study was to evaluate relatively new technology, small-footprint, discrete-return lidar and hyperspectral sensors, for the estimation of aboveground biomass in a Costa Rican tropical rain forest landscape. We derived a suite of predictive metrics for field plots: lidar metrics were calculated from plot vertical height profiles and hyperspectral metrics included fraction of spectral mixing endmembers and narrowband indices that respond to photosynthetic vegetation, structure, senescence, health and water and lignin content. We used single- and two-variable linear regression analyses to relate lidar and hyperspectral metrics to aboveground biomass of plantation, managed parkland and old-growth forest plots. The best model using all 83 biomass plots included two lidar metrics, plot-level mean height and maximum height, with an r2 of 0.90 and root-mean-square error (RMSE) of 38.3 Mg/ha. When the analysis was constrained to plantation plots, which had the most accurate field data, the r2 of the model increased to 0.96, with RMSE of 10.8 Mg/ha (n = 32). Hyperspectral metrics provided lower accuracy in estimating biomass than lidar metrics, and models with a single lidar and hyperspectral metric were no better than the best model using two lidar metrics. These results should be viewed as an initial assessment of using these combined sensors to estimate tropical forest biomass; hyperspectral data were reduced to nine indices and three spectral mixture fractions, lidar data were limited to first-return canopy height, sensors were flown only once at different seasons, and we explored only linear regression for modeling. However, this study does support conclusions from studies at this and other climate zones that lidar is a premier instrument for mapping biomass (i.e., carbon stocks) across broad spatial scales.  相似文献   

15.
With a burgeoning global population, the pressures of urbanization are increasingly prevalent. The need to quantify urban greenness remains significant due to environmental impact and its relationship with human well-being. Utilizing 1 m discrete-return airborne lidar-derived digital terrain models (DTMs) and digital surface models (DSMs), aerial imagery, and lidar-imagery fusion, this study assesses vegetation, specifically tree canopy, change within Oklahoma City between 2006 and 2013. Specifically, we (1) identify an accurate object-based image analysis (OBIA) method for the detection of urban vegetation outlines, and (2) apply that method to locate and quantify vegetation change and assess spatial patterns in Oklahoma City between 2006 and 2013. The proposed OBIA approach extracts urban vegetation coverage from aerial imagery and lidar-based models with around 89% accuracy. Regarding vegetation change, Oklahoma City lost 9.69 km2 (3.74 mi2) of tree canopy coverage, which accounted for a 2% loss in total greenness.  相似文献   

16.
The distribution of the discrete-return point density in airborne lidar flights obtained from an oscillating mirror laser scanner is analysed and alternative formulations to determine its value are presented. The point density in a lidar swath varies and can best be fitted with a potential function. This study confirms that calculating the overall point density with traditional statistical parameters yields biased results owing to the abnormally high densities of the swath boundaries. New formulas for calculating the representative mean are proposed: a weighted arithmetic mean (WAM) based on a potential function; geometric mean (GM); and harmonic mean (HM). All three means give more weight to the central sectors across the strip and less to the boundary sectors where extreme data redundancy exists. The WAM based on a potential function yields equivalent estimates as the HM; the GM yields slightly higher estimates. The results obtained improve the mean estimation and, more importantly, allow users to estimate better the mean point density on airborne lidar surveys, which are usually overestimated approximately by 15%.  相似文献   

17.
Topographic and elevation data are essential in the development of supporting infrastructure around mining sites. The de facto standard for acquiring elevation data is through light detection and ranging (lidar). The high labour and monetary cost of acquiring lidar has fostered more cost-effective approaches for creating elevation models that use stereo photogrammetry. To assess the accuracy of stereo-photogrammetry-derived elevation models and their potential application, we benchmark satellite (Worldview-2) and aircraft (South Central Ontario Orthoimagery Project; SCOOP) stereo-derived digital surface models (DSMs) against a lidar-derived DSM. Our results show that both stereo-derived DSMs have strong monotonic correlations with lidar across a range of land-cover types and slopes. The overall vertical accuracy of Worldview-2 and SCOOP DSMs are similar and do not meet the United States National Digital Elevation Program (NDEP) standards. However, accuracy assessment across land-cover types and slope categories show that specific land cover types (i.e. grass, row crops/pasture, sparse vegetation and marsh) on gently sloping terrain compare well to lidar data and meet NDEP accuracy standards. We situate the presented research in the context of northern resource development and discuss opportunities to improve the vertical accuracy of stereo-derived DSMs, for example, through unmanned aerial systems.  相似文献   

18.
The light detection and ranging (lidar) technique has rapidly developed worldwide in numerous fields. The canopy height model (CHM), which can be generated from lidar data, is a useful model in forestry research. The CHM shows the canopy height above ground, and it indicates vertical elevation changes and the horizontal distribution of the canopy’s upper surface. Many vegetation parameters, which are important in forest inventory, can be extracted from the CHM. However, some abnormal or sudden changes of the height values (i.e. invalid values), which appear as unnatural holes in an image, exist in CHMs. This article proposes an approach to fill the invalid values in lidar-derived CHMs with morphological crown control. First, the Laplacian operator is applied to an original CHM to determine possible invalid values. Then, the morphological closing operator is applied to recover the crown coverage. By combining the two results, the possible invalid values in the CHM can be confirmed and replaced by corresponding values in the median-filtered CHM. The filling results from this new method are compared with those from other methods and with charge-coupled device images for evaluation. Finally, a CHM with random noise is used to test the filling correctness of the algorithm. The experiments show that this approach can fill the most invalid values well while refraining from overfilling.  相似文献   

19.
The overall goal of this study was to develop methods for assessing crown base height for individual trees using airborne lidar data in forest settings typical for the southeastern United States. More specific objectives are to: (1) develop new lidar-derived features as multiband height bins and processing techniques for characterizing the vertical structure of individual tree crowns; (2) investigate several techniques for filtering and analyzing vertical profiles of individual trees to derive crown base height, such as Fourier and wavelet filtering, polynomial fit, and percentile analysis; (3) assess the accuracy of estimating crown base height for individual trees, and (4) investigate which type of lidar data, point frequency or intensity, provides the most accurate estimate of crown base height. A lidar software application, TreeVaW, was used to locate individual trees and to obtain per tree measurements of height and crown width. Tree locations were used with lidar height bins to derive the vertical structure of tree crowns and measurements of crown base height. Lidar-derived crown base heights of individual trees were compared to field observations for 117 trees, including 94 pines and 23 deciduous trees. Linear regression models were able to explain up to 80% of the variability associated with crown base height for individual trees. Fourier filtering used for smoothing the vertical crown profile consistently provided the best results when estimating crown base height.  相似文献   

20.
Large-footprint waveform light detection and ranging (lidar) data have been widely used in above-ground forest biomass estimation. Waveform metrics derived from basic statistics (e.g. percentile of energy) of the lidar waveform, such as canopy height and height of median energy, have been applied to biomass estimation in numerous studies. In this study, a set of metrics based on Gaussian decomposition (GD) results were developed and evaluated for forest above-ground biomass estimation using NASA’s laser vegetation imaging sensor (LVIS) data. The GD metrics were designed to explicitly incorporate lidar intensity and vertical structures of canopy layers for biomass estimation. The proposed GD metrics used information related to the above-ground height of each Gaussian centroid and the Gaussian area index (GAI), where GAI is the area covered by a Gaussian function. Two types of novel GD metrics were developed: (1) percentile-height GAI metrics expressing the GAI summation of a subset of Gaussian centroids located within a certain percentile height range; and (2) height-weighted GAI metrics, a summation of GAIs of a waveform weighted by the corresponding heights of their Gaussian centroids. A biomass regression model was built by eight newly developed GD metrics using GAI information and five pre-existing GD-derived metrics that have not previously been used for biomass estimation. The performance of the regression model was then compared to another regression model using 12 previously published metrics (non-GD metrics). The Random Forests (RF) regression algorithm was employed for predicting biomass. The RF out-of-bag results indicated that above-ground biomass estimations using GD metrics achieved significantly better results than those derived from non-GD metrics for deciduous plots (19% lower root mean square error (RMSE), 25% higher coefficient of determination (R2), and marginally better results in coniferous plots (4% lower RSME, 6% higher R2). The combination of GD and non-GD metrics achieved comparable biomass estimation results to the model using exclusively GD metrics. GD metrics also showed strong correlation with forest attributes such as mean diameter at breast height (DBH) and stem density. This study contributes to the usage of GD results for accurate estimation of forest above-ground biomass in large-footprint lidar waveform data in temperate deciduous forests, because temperate deciduous forests have been proved challenging in regard to lidar-derived biomass estimations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号