首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Database searches indicated that the genome of Bacillus subtilis contains three different genes encoding RNase H homologues. The ypdQ gene encodes an RNase HI homologue with 132 amino acid residues, whereas the rnh and ysgB genes encode RNase HII homologues with 255 and 313 amino acid residues, respectively. RNases HI and HII show no significant sequence similarity. These genes were individually expressed in Escherichia coli; the recombinant proteins were purified, and their enzymatic properties were compared with those of E. coli RNases HI and HII. We found that the ypdQ gene product showed no RNase H activity. The 2.2 kb pair genomic DNA containing this gene did not suppress the RNase H deficiency of an E. coli rnhA mutant, indicating that this gene product shows no RNase H activity in vivo as well. In contrast, the rnh (rnhB) gene product (RNase HII) showed a preference for Mn2+, as did E. coli RNase HII, whereas the ysgB (rnhC) gene product (RNase HIII) exhibited a Mg2+-dependent RNase H activity. Oligomeric substrates digested with these enzymes indicate similar recognition of these substrates by B. subtilis and E. coli RNases HII. Likewise, B. subtilis RNase HIII and E. coli RNase HI have generated similar products. These results suggest that B. subtilis RNases HII and HIII may be functionally similar to E. coli RNases HII and HI, respectively. We propose that Mn2+-dependent RNase HII is universally present in various organisms and Mg2+-dependent RNase HIII, which may have evolved from RNase HII, functions as a substitute for RNase HI.  相似文献   

2.
3.
Recently we showed that the major mammalian RNase H, RNase HI, is evolutionarily related to prokaryotic RNase HII (Frank et al., FEBS-Lett. 421, 23-26, 1998), an enzyme described to be a minor activity in E. coli. As a consequence we addressed the question of whether a human RNase H exists, sharing homology with the main E. coli enzyme, RNase HI. Employing sequence analysis of expressed sequence tags, followed by specific PCR amplification of human cDNA, we cloned, sequenced and expressed a human open reading frame, coding for a 32 kDa protein. Purification of the recombinant His(6)-tagged protein from E. coli extracts using Ni(2+)-chelating chromatography and subsequent renaturation gel assay proved that it is an active RNase H. The properties of this enzyme suggest that it is identical with the human RNase HII, previously purified by one of us (Frank et al., Nucleic Acids Res. 22, 5247-5254, 1994). Studies using a green fluorescent protein-fusion construct reveal that this protein is located in the nucleus.  相似文献   

4.
5.
Escherichia coli ribonucleases (RNases) HII, III, II, PH and D have been used to characterise new and known viral, bacterial, archaeal and eucaryotic sequences similar to these endo- (HII and III) and exoribonucleases (II, PH and D). Statistical models, hidden Markov models (HMMs), were created for the RNase HII, III, II and PH and D families as well as a double-stranded RNA binding domain present in RNase III. Results suggest that the RNase D family, which includes Werner syndrome protein and the 100 kDa antigenic component of the human polymyositis scleroderma (PMSCL) autoantigen, is a 3'-->5' exoribonuclease structurally and functionally related to the 3'-->5' exodeoxyribonuclease domain of DNA polymerases. Polynucleotide phosphorylases and the RNase PH family, which includes the 75 kDa PMSCL autoantigen, possess a common domain suggesting similar structures and mechanisms of action for these 3'-->5' phosphorolytic enzymes. Examination of HMM-generated multiple sequences alignments for each family suggest amino acids that may be important for their structure, substrate binding and/or catalysis.  相似文献   

6.
7.
To identify the target amino acid for the cAMP-dependent phosphorylation of yeast 6-phosphofructo-2-kinase Ser644 was mutated to Ala. The plasmid-encoded wild-type and mutant enzymes were overexpressed in E. coli TG2 cells and in the yeast strain DFY658. Like the wild-type enzyme, the Ser644-->Ala mutant was phosphorylated in vivo after addition of glucose to yeast cells and in vitro by the catalytic subunit of protein kinase A. The specific activity of the mutant enzyme was 6-fold lower than that of the wild-type yeast 6-phosphofructo-2-kinase, but both enzymes were activated in response to the addition of glucose to yeast cells.  相似文献   

8.
The rnc gene of Bacillus subtilis, which has 36% amino acid identity with the gene that encodes Escherichia coli RNase III endonuclease, was cloned in E. coli and shown by functional assays to encode B. subtilis RNase III (Bs-RNase III). The cloned B. subtilis rnc gene could complement an E. coli rnc strain that is deficient in rRNA processing, suggesting that Bs-RNase III is involved in rRNA processing in B. subtilis. Attempts to construct a B. subtilis rnc null mutant were unsuccessful, but a strain was constructed in which only a carboxy-terminal truncated version of Bs-RNase III was expressed. The truncated Bs-RNase III showed virtually no activity in vitro but was active in vivo. Analysis of expression of a copy of the rnc gene integrated at the amy locus and transcribed from a p(spac) promoter suggested that expression of the B. subtilis rnc is under regulatory control.  相似文献   

9.
10.
11.
Tyrosine-114 is one of 13 totally conserved amino acids in all known sequences of O6-alkylguanine-DNA alkyltransferase (AGT). The importance of this amino acid in repair of alkylated DNA by AGT was studied by changing it to phenylalanine (F), alanine (A), threonine (T), or glutamic acid (E) in human AGT. The activities of the mutant proteins were then compared to those of the wild type with regard to abilities to do the following: (a) protect Escherichia coli from the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG); (b) repair methylated DNA in vitro; (c) bind to oligodeoxynucleotides containing O6-methylguanine; and (d) react with the low molecular weight pseudosubstrate, O6-benzylguanine. When expressed at high levels in E. coli strain GWR109, lacking endogenous AGT, the wild type and the Y114F mutant were highly effective in reducing mutations and cell killing by MNNG. The Y114A mutant had a much smaller protective effect, and mutants Y114T and Y114E were inactive. Purified preparations of all four AGT mutants showed an approximately similar degree (74-120-fold) of reduction in the rate of reaction with O6-benzylguanine. In contrast, the degree of reduction in activity toward methylated DNA substrates in vitro varied according to the mutation with the more conservative Y114F producing only a 30-fold reduction and the most drastic change of Y114E abolishing activity completely. Alteration Y114A produced a 1000-fold reduction whereas Y114T reduced activity by 10000-fold. All of the mutations affected the binding of AGT to single- or double-stranded oligodeoxynucleotides containing O6-methylguanine. The extent of increase in the Kd varied according to the amino acid with 2-5-fold (F), 7-11-fold (A), 167-200-fold (T), and 600-1000-fold (E) increases. These results are consistent with tyrosine-114 playing a role both in the binding of AGT to its DNA substrate and in facilitating the transfer of the alkyl group. It is probable that AGT resembles other DNA repair proteins in bringing about a "flipping out" of the target base from the DNA helix. Tyrosine-114 is therefore an excellent candidate for a key role in the interaction with the flipped O6-methylguanine. The results also show that when large amounts of AGT are produced in the cell, substantial decreases in the efficiency with which AGT can repair methylated DNA do not prevent the ability to protect E. coli from toxic alkylating agents. Mutant Y114F, whose activity was reduced by 30-fold, was equal to wild-type AGT in bringing about this protection.  相似文献   

12.
The ribozyme RNase P absolutely requires divalent metal ions for catalytic function. Multiple Mg2+ ions contribute to the optimal catalytic efficiency of RNase P, and it is likely that the tertiary structure of the ribozyme forms a specific metal-binding pocket for these ions within the active-site. To identify base moieties that contribute to catalytic metal-binding sites, we have used in vitro selection to isolate variants of the Escherichia coli RNase P RNA with altered specificities for divalent metal. RNase P RNA variants with increased activity in Ca2+ were enriched over 18 generations of selection for catalysis in the presence of Ca2+, which is normally disfavored relative to Mg2+. Although a wide spectrum of mutations was found in the generation-18 clones, only a single point mutation was common to all clones: a cytosine-to-uracil transition at position 70 (E. coli numbering) of RNase P. Analysis of the C70U point mutant in a wild-type background confirmed that the identity of the base at position 70 is the sole determinant of Ca2+ selectivity. It is noteworthy that C70 lies within the phylogenetically well conserved J3/4-P4-J2/4 region, previously implicated in Mg2+ binding. Our finding that a single base change is sufficient to alter the metal preference of RNase P is further evidence that the J3/4-P4-J2/4 domain forms a portion of the ribozyme's active site.  相似文献   

13.
Expression of S cerevisiae RNase H1 in E coli leads to the formation of a proteolytic product with a molecular mass of 30 kDa that is derived from the 39-kDa full length protein. The 30-kDa form retains RNase H1 activity, as determined by renaturation gel assay. The amount of proteolysis observed depends on the procedure used in preparing the cell extracts for protein analysis. The cleavage site on the amino acid sequence of the 39-kDa RNase H1 was determined by N-terminal sequence analysis of the 30-kDa proteolytic form. The cut occurs between two arginines located at the amino terminus region of the protein. The pattern of proteolysis was examined for both the wild-type RNase H1 and a mutant RNase H1 that was constructed in this work. In the mutant the second arginine of the cleavage site was changed to a lysine. Comparisons of the expression of the wild-type and altered protein in two different E coli strains demonstrate that the protease responsible for the degradation has a specificity very similar to that of the OmpT protease. However, the proteolysis observed in an OmpT background in extracts, prepared by boiling the cells in SDS containing buffer, indicates that the protease may, unlike OH108.  相似文献   

14.
We have identified a gene (iadA) in Escherichia coli encoding a 41-kDa polypeptide that catalyzes the hydrolytic cleavage of L-isoaspartyl, or L-beta-aspartyl, dipeptides. We demonstrate at least a 3000-fold purification of the enzyme to homogeneity from crude cytosol. From the amino-terminal amino acid sequence obtained from this preparation, we designed an oligonucleotide that allowed us to map the gene to the 98-min region of the chromosome and to clone and obtain the DNA sequence of the gene. Examination of the deduced amino acid sequence revealed no similarities to other peptidases or proteases, while a marked similarity was found with several dihydroorotases and imidases, reflecting the similarity in the structures of the substrates for these enzymes. Using an E. coli strain containing a plasmid overexpressing this gene, we were able to purify sufficient amounts of the dipeptidase to characterize its substrate specificity. We also examined the phenotype of two E. coli strains where this isoaspartyl dipeptidase gene was deleted. We inserted a chloramphenicol cassette into the disrupted coding region of iadA in both a parent strain (MC1000) and a derivative strain (CL1010) lacking pcm, the gene encoding the L-isoaspartyl methyltransferase involved in the repair of isomerized proteins. We found that the iadA deletion does not result in reduced stationary phase or heat shock survival. Analysis of isoaspartyl dipeptidase activity in the deletion strain revealed a second activity of lower native molecular weight that accounts for approximately 31% of the total activity in the parent strain MC1000. The presence of this second activity may account for the absence of an observable phenotype in the iadA mutant cells.  相似文献   

15.
Eukaryotic RNases H from Saccharomyces cerevisiae , Schizosaccharomyces pombe and Crithidia fasciculata , unlike the related Escherichia coli RNase HI, contain a non-RNase H domain with a common motif. Previously we showed that S.cerevisiae RNase H1 binds to duplex RNAs (either RNA-DNA hybrids or double-stranded RNA) through a region related to the double-stranded RNA binding motif. A very similar amino acid sequence is present in caulimovirus ORF VI proteins. The hallmark of the RNase H/caulimovirus nucleic acid binding motif is a stretch of 40 amino acids with 11 highly conserved residues, seven of which are aromatic. Point mutations, insertions and deletions indicated that integrity of the motif is important for binding. However, additional amino acids are required because a minimal peptide containing the motif was disordered in solution and failed to bind to duplex RNAs, whereas a longer protein bound well. Schizosaccharomyces pombe RNase H1 also bound to duplex RNAs, as did proteins in which the S.cerevisiae RNase H1 binding motif was replaced by either the C.fasciculata or by the cauliflower mosaic virus ORF VI sequence. The similarity between the RNase H and the caulimovirus domain suggest a common interaction with duplex RNAs of these two different groups of proteins.  相似文献   

16.
Many antitumor agents and antibiotics affect cells by interacting with type II topoisomerases, stabilizing a covalent enzyme-DNA complex. A pathway of recombination can apparently repair this DNA damage. In this study, transposon mutagenesis was used to identify possible components of the repair pathway in bacteriophage T4. Substantial increases in sensitivity to the antitumor agent m-AMSA [4'-(9-acridinylamino)methanesulfon-m-anisidide] were found with transposon insertion mutations that inactivate any of six T4-encoded proteins: UvsY (DNA synaptase accessory protein), UvsW (unknown function), Rnh (RNase H and 5' to 3' DNA exonuclease), alpha-gt (alpha-glucosyl transferase), gp47.1 (uncharacterized), and NrdB (beta subunit of ribonucleotide reductase). The role of the rnh gene in drug sensitivity was further characterized. First, an in-frame rnh deletion mutation was constructed and analyzed, providing evidence that the absence of Rnh protein causes hypersensitivity to m-AMSA. Second, the m-AMSA sensitivity of the rnh-deletion mutant was shown to require a drug-sensitive T4 topoisomerase. Third, analysis of double mutants suggested that uvsW and rnh mutations impair a common step in the recombinational repair pathway for m-AMSA-induced damage. Finally, the rnh-deletion mutant was found to be hypersensitive to UV, implicating Rnh in recombinational repair of UV-induced damage.  相似文献   

17.
Bovine pancreatic ribonuclease (RNase A) is a member of a homologous group of extensively studied proteins. It is a small, basic protein, containing 124 amino acid residues and four stabilizing disulfide bridges. Ribonuclease A catalyzes the hydrolysis of the phosphodiester bonds in ribonucleic acids. Since this degradation of RNA interferes with normal cell functions, the signal peptide of alkaline phosphatase (phoA, Escherichia coli) was cloned onto the gene coding for RNase A, directing the protein to the periplasm. Several expression systems have been evaluated which use T7, trc, or PR promoters to transcribe the RNase A gene. Also, variation in host strains was tested to optimize the protein yield. It was found that the PR system gave better expression than the two other systems. E. coli strain BL21 was shown to be the strain in which export to the periplasm was most effective and recombinant RNase A could be isolated from the periplasmic fraction of these cells. The system provides a stable yield of active recombinant bovine pancreatic RNase of about 45-50 mg/liter of cell culture.  相似文献   

18.
Purification of mutant enzymes is a prime requirement of biophysical and biochemical studies. Our investigations on the essential Escherichia coli enzyme glutaminyl-tRNA synthetase demand mutant enzymes free of any wild-type protein contamination. However, as it is not possible to express noncomplementing mutant enzymes in an E. coli glnS-deletion strain, we developed a novel strategy to address these problems. Instead of following the common tactic of epitope-tagging the mutant protein of interest on an extrachromosomal genetic element, we fused a reporter epitope to the 5' end of the chromosomal glnS-gene copy: this is referred to as 'reverse epitope-tagging.' The corresponding strain, E. coli HAPPY101, displays a normal phenotype, and glutaminyl-tRNA synthetase is exclusively present as an epitope-tagged form in cell-free extracts. Here we report the use of E. coli HAPPY101 to express and purify a number of mutant glutaminyl-tRNA synthetases independently of their enzymatic activity. In this process, epitope-tagged wild-type protein is readily separated from mutant enzymes by conventional chromatographic methods. In addition, the absence of wild-type can be monitored by immunodetection using a monoclonal antibody specific for the epitope. The strategy described here for expression and purification of an essential enzyme is not restricted to glutaminyl-tRNA synthetase and should be applicable to any essential enzyme that retains sufficient activity to sustain growth following reverse epitope-tagging.  相似文献   

19.
Previously we have shown that the Na+-translocating Escherichia coli (F1-delta)/Propionigenium modestum (Fo+delta) hybrid ATPase acquires a Na+-independent phenotype by the c subunit double mutation F84L, L87V that is reflected by Na+-independent growth of the mutant strain MPC8487 on succinate [Kaim, G., and Dimroth, P. (1995) J. Mol. Biol. 253, 726-738]. Here we describe a new class of mutants that were obtained by random mutagenesis and screening for Na+-independent growth on succinate. All six mutants of the new class contained four mutations in the a subunit (S89P, K220R, V264E, I278N). Results from site-specific mutagenesis revealed that the substitutions K220R, V264E, and I278N were sufficient to create the new phenotype. The resulting E. coli mutant strain MPA762 could only grow in the absence but not in the presence of Na+ ions on succinate minimal medium. This effect of Na+ ions on growth correlated with a Na+-specific inhibition of the mutant ATPase. The Ki for NaCl was 1. 5 mM at pH 6.5, similar to the Km for NaCl in activating the parent hybrid ATPase at this pH. On the other hand, activation by Li+ ions was retained in the new mutant ATPase. In the absence of Na+ or Li+, the mutant enzyme had the same pH optimum at pH 6.5 and twice the specific activity as the parent hybrid ATPase. In accordance with the kinetic data, the reconstituted mutant ATPase catalyzed H+ or Li+ transport but no Na+ transport. These results show for the first time that the coupling ion selectivity of F1Fo ATPases is determined by structural elements not only of the c subunit but also of the a subunit.  相似文献   

20.
To identify factors that contribute to the thermal stability of ribonuclease HI (RNase HI) from Thermus thermophilus HB8, protein variants with a series of carboxyl-terminal truncations and Cys --> Ala mutations were constructed, and their thermal denaturations were analyzed by CD. The results indicate that Cys41 and Cys149 contribute to the protein stability, probably through the formation of a disulfide bond. Peptide mapping analysis for the mutant protein with only two cysteine residues, at positions 41 and 149, indicated that this disulfide bond is partially formed in a protein purified from Escherichia coli in the absence of a reducing reagent but is fully formed in a thermally denatured protein. These results suggest that the thermal stability of T. thermophilus RNase HI, determined in the absence of a reducing reagent, reflects that of an oxidized form of the protein. Comparison of the thermal stabilities and the enzymatic activities of the wild-type and truncated proteins, determined in the presence and absence of a reducing reagent, indicates that the formation of this disulfide bond increases the thermal stability of the protein by 6-7 degreesC in Tm and approximately 3 kcal/mol in DeltaG without seriously affecting the enzymatic activity. Since T. thermophilus RNase HI is present in a reducing environment in cells, this disulfide bond probably is not formed in vivo but is spontaneously formed in vitro in the absence of a reducing reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号