首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a CMOS multiport static memory cell with which it is possible to use current-switching bipolar peripheral circuits to maintain small voltage swings throughout the read access path while retaining the high density of CMOS memory arrays. An experimental 32-word×32 bit three-port register file has been designed and implemented using this cell. The register file was fabricated in a 0.6-μm BiCMOS technology and operates from a single -3.3-V power supply with ECL-compatible I/O circuits. Under nominal operating conditions at 20°C, the measured pin-to-pin access time is 1.3 ns. The minimum write enable pulse width required is less than 1 ns, and the power dissipation, excluding the output buffers, is 650 mW at a clock rate of 100 MHz  相似文献   

2.
Discusses high density CMOS/SOS technology used to develop a fully static 4096-bit RAM with a five-transistor storage cell. Selection of a five-transistor memory cell has reduced the access to the flip-flop storage element to a single word line transistor and bit line. The word line transistor must be able to prevent data altering currents from entering the memory cell at all times except for the write operation. The write operation is enhanced by reducing the bias voltage across the memory cell, thereby making the current needed to alter the cell smaller. Through the use of a 5 /spl mu/m design rule, the memory cell occupies 2913 /spl mu/m/SUP 2/. The 4096-bit static CMOS/SOS RAM contains 22553 transistors in 20 mm/SUP 2/. Organised as 1024 4-bit words, the RAM has a read cycle time of 350 ns and standby power dissipation of 50 /spl mu/W at V/SUB cc/=5 V and temperature of 27/spl deg/C.  相似文献   

3.
A high-speed low-power CMOS fully static, 4096 word by 1 bit random-access memory (RAM) has been developed, which contains a bipolar-CMOS (BCMOS) circuit on the same chip. The device is realized using low-power-oriented circuit design and high-performance CMOS technology utilizing 3-µm gate length. The fabricated 4K static RAM has an address access time of 43 ns and a power dissipation of 80 mW.  相似文献   

4.
用0.8μm工艺技术设计的65-kb BiCMOS SRAM   总被引:1,自引:0,他引:1  
设计了一种65-kb BiCMOS静态随机存取存储器(SRAM)的存储单元及其外围电路,提出了采用先进的0.8mm BiCMOS工艺,制作所设计SRAM的一些技术要点。实验结果表明,所设计的BiCMOSSRAM,其电源电压可低于3V,它既保留了CMOS SRAM低功耗、高集成密度的长处,又获得了双极型(Bipolar)电路快速、大电流驱动能力的优点,因此,特别适用于高速缓冲静态存储系统和便携式数字电子设备中。  相似文献   

5.
BiCMOS circuit technology for a high-speed and large-capacity ECL-compatible static RAM (SRAM) is described. To obtain high-speed and low-power operation, a decoder with a pre-main decode configuration having an ECL-interface circuit and a word driver with BiCMOS inverter are proposed. A BiCMOS multiplexer with a single emitter-follower driver is also proposed. An optimization method for memory cell array configuration is presented that minimizes the total delay time and the total power dissipation of SRAMs. Circuit simulation results show that a 64-kbit ECL-compatible SRAM with an access time of less than 7 ns and a power dissipation of less than 1 W is obtainable  相似文献   

6.
A new architecture for serial access memory is described that enables a static random access memory (SRAM) to operate in a serial access mode. The design target is to access all memory address serially from any starting address with an access time of less than 10 ns. This can be done by all initializing procedure and three new circuit techniques. The initializing procedure is introduced to start the serial operation at an arbitrary memory address. Three circuit techniques eliminate extra delay time caused by an internal addressing of column lines, sense amplifiers, word lines, and memory cell blocks. This architecture was successfully implemented in a 4-Mb CMOS SRAM using a 0.6 μm CMOS process technology. The measured serial access time was 8 ns at a single power supply voltage of 3.3 V  相似文献   

7.
The CMOS-storage emitter-access (CSEA) memory cell offers faster access than the MOS cells used in conventional BiCMOS SRAMs but using it in large memory arrays poses several problems. Novel BiCMOS circuit approaches to address the problems of decoding power, electronic noise, level translation, and write disturbance are described. Results on a 64-kb CSEA SRAM using these techniques are reported. The device, fabricated in an 0.8-μm BiCMOS technology, achieves read access and write pulse time of less than 4 ns while dissipating 1.7 W at a case temperature of 70°C  相似文献   

8.
A two-port capacitorless PNPN device with high density,high speed and low power memory fabricated using standard CMOS technology is presented.Experiments and calibrated simulations were conducted which prove that this new memory cell has a high operation speed(ns level),large read current margin(read current ratio of 10~4×),low process variation,good thermal reliability and available retention time(190 ms).Furthermore,the new memory cell is free of the cyclic endurance/reliability problems induced by hot-carrier injection due to the gateless structure.  相似文献   

9.
A 1-Mbit CMOS static RAM (SRAM) with a typical address access time of 9 ns has been developed. A high-speed sense amplifier circuit, consisting of a three-stage PMOS cross-coupled sense amplifier with a CMOS preamplifier, is the key to the fast access time. A parallel-word-access redundancy architecture, which causes no access time penalty, was also incorporated. A polysilicon PMOS load memory cell, which had a large on-current-to-off-current ratio, gave a much lower soft-error rate than a conventional high-resistance polysilicon load cell. The 1-Mbit SRAM, fabricated using a half-micrometer, triple-poly, and double-metal CMOS technology, operated at a single supply voltage of 5 V. An on-chip power supply converter was incorporated in the SRAM to supply a partial internal supply voltage of 4 V to the high-performance half-micrometer MOS transistors.<>  相似文献   

10.
The authors report a 4 M word×1 b/1 M word×4 b BiCMOS SRAM that can be metal mask programmed as either a 6-ns access time for an ECL 100 K I/O interface to an 8-ns access time for a 3.3-V TTL I/O interface. Die size is 18.87 mm×8.77 mm. Memory cell size is 5.8 μm×3.2 μm. In order to achieve such high-speed address access times the following technologies were developed: (1) a BiCMOS level converter that directly connects the ECL signal level to the CMOS level; (2) a high-speed BiCMOS circuit with low threshold voltage nMOSFETs; (3) a design method for determining the optimum number of decoder gate stages and the optimum size of gate transistors; (4) high-speed bipolar sensing circuits used at 3.3-V supply voltage; and (5) 0.55-μm BiCMOS process technology with a triple-well structure  相似文献   

11.
A high-speed CMOS/SOS 4K word/spl times/1 bit static RAM is described. The RAM features a MoSi/SUB 2/ gate CMOS/SOS technology with 2 /spl mu/m gate length and 500 /spl Aring/ thick gate oxide. Performance advantage of SOS over bulk is discussed for the scaled-down MOS LSI with 1-2 /spl mu/m gate. A standard 6-transistor CMOS cell and a two-stage sense amplifier scheme are utilized. In spite of the rather conservative 3.5 /spl mu/m design rule except for the 2 /spl mu/m gate length, the cell size of 36/spl times/36 /spl mu/m, the die size of 3.11/spl times/4.07 mm, and the typical read access and cycle time of 18 ns are achieved. The active and standby power dissipation are 200 mW and 50 /spl mu/W, respectively.  相似文献   

12.
A high-speed BiCMOS ECL (emitter coupled logic) interface SRAM (static RAM) architecture is described. To obtain high-speed operation for scaled-down devices, such as MOSFETs with a feature size of 0.8 μm or less and with a small MOS level, a new SRAM architecture featuring all-bipolar peripheral circuits and CMOS memory cells with VSS generator has been developed. Two key circuits, a VSS generator and a current switch level converter, are described in detail. These circuits reduce the external supply voltage to the internal MOS level, thus permitting high-speed SRAM operation. To demonstrate the effectiveness of the concept, a 256 kb SRAM with an address access time of 5 ns is described  相似文献   

13.
A 256 K (32 K×8) CMOS static RAM (SRAM) which achieves an access time of 7.5 ns and 50-mA active current at 50-MHz operation is described. A 32-block architecture is used to achieve high-speed access and low power dissipation. To achieve faster access time, a double-activated-pulse circuit which generates the word-line-enable pulse and the sense-amplifier-enable pulse has been developed. The data-output reset circuit reduces the transition time and the noise generated by the output buffer. A self-aligned contact technology reduces the diffused region capacitance. This RAM has been fabricated in a twin-tub CMOS 0.8-μm technology with double-level polysilicon (the first level is polycide) and double-level metal. The memory cell size is 6.0×11.0 μm2 and the chip size is 4.38×9.47 mm 2  相似文献   

14.
A 256 K×4 FIFO (first-in-first-out) CMOS memory with 20-ns access time and 30-ns cycle time is described. To accomplish full static and asynchronous operation, signal synchronizer and arbiter circuits have been developed and implemented into the device. A pair of 120-word×4-bit static memories are furnished to provide 20-ns data access from the very first read cycle. The average current measured at 30-ns read/write operation and the standby current are typically 23 and 1.2 mA, respectively  相似文献   

15.
Using advanced high-performance CMOS (Hi-CMOSII) technology and a high-speed circuit technique, a fully static 4096-word by one-bit RAM with typical address access time of 18 ns and power dissipation of 150 mW has been designed. The power-access-time product realized by the design is almost an order of magnitude better than existing NMOS 4K static RAMs. Moreover, to produce low-cost high-density static RAMs, a new redundancy technique utilizing laser shorting of intrinsic polysilicon is proposed.  相似文献   

16.
This paper presents, for the first time, a 4-Mb ferroelectric random access memory, which has been designed and fabricated with 0.6-μm ferroelectric storage cell integrated CMOS technology. In order to achieve a stable cell operation, novel design techniques robust to unstable cell capacitors are proposed: (1) double-pulsed plate read/write-back scheme; (2) complementary data preset reference circuitry; (3) relaxation/fatigue/imprint-free reference voltage generator; (4) open bitline cell array; (5) unintentional power-off data protection scheme. Additionally, to improve cell array layout efficiency a selectively driven cell plate scheme has been devised. The prototype chip incorporating these circuit schemes shows 75 ns access time and 21-mA active current at 3.3 V, 25°C, 110-ns minimum cycle. The die size is 116 mm2 using 9 μm2, one-transistor/one-capacitor-based memory cell, twin-well, single-poly, single-tungsten, and double-Al process technology  相似文献   

17.
While an ECL-CMOS SRAM can achieve both ultra high speed and high density, it consumes a lot of power and cannot be applied to low power supply voltage applications. This paper describes an NTL (Non Threshold Logic)-CMOS SRAM macro that consists of a PMOS access transistor CMOS memory cell, an NTL decoder with an on-chip voltage generator, and an automatic bit line signal voltage swing controller. A 32 Kb SRAM macro, which achieves a 1 ns access time at 2.5 V power supply and consumes a mere 1 W, has been developed on a 0.4 μm BiCMOS technology  相似文献   

18.
A 4-Mb field memory with a 100-MHz serial access rate has been developed. A new architecture that significantly improves serial I/O operation speed, reduces layout area, and offers simple control is proposed. To accomplish this task, a new architectural data shifter and high-speed redundancy circuit have been developed. The field memory has a 568-line×960 pixel×8-b (4,362,240 b) memory cell array designed for high-definition television (HDTV) screens. A 1.0 μm CMOS process technology is used to produce a die size of 12.94 mm×25.9 mm. The write-read cycle time is 9 ns, the access time is 8 ns, and the active current is 170 mA at a 50-MHz cycle rate with a standby current of about 3 mA  相似文献   

19.
An ECL (emitter-coupled-logic) I/O 256K×1-bit SRAM (static random-access memory) has been developed using a 1-μm BiCMOS technology. The double-level-poly, double-level-metal process produces 0.8-μm CMOS effective gate lengths and polysilicon emitter bipolar transistors. A zero-DC-power ECL-to-CMOS translation scheme has been implemented to interface the ECL periphery circuits to the CMOS decode and NMOS matrix. Low-impedance bit-line loads were used to minimize read access time. Minimization of bit-line recovery time after a write cycle is achieved through the use of a bipolar/CMOS write recovery method. Full-die simulations were performed using HSPICE on a CRAY-1  相似文献   

20.
静态存储单元电路设计工艺的研究   总被引:2,自引:1,他引:1  
论述了静态存储单元电路对目前高速数字系统的意义。通过采用对双极型(Bipolar)、互补对称式金属–氧化物–半导体型(CMOS)、双极互补金属氧化物半导体型(BiCMOS)三种不同工艺所设计的静态存储单元电路在性能、特点方面进行比较的方法,从而提出一些实际的解决措施,以便研发人员在设计具体的SRAM电路时有所参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号