首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
羧甲基豆渣膳食纤维的制备及其性能研究   总被引:9,自引:0,他引:9  
豆渣膳食纤维的最佳制备工艺为 :分离提取溶剂 1 0mol/L氢氧化钠、料液比 1g∶6mL ,温度 60℃ ,时间 3h。脱脂溶剂为丙醇 ,料液比 1g∶4mL ,温度 2 5℃ ,时间 10h。产品膳食纤维含量 85 3 9% ,产品中的脂肪含量低于 0 98%。羧甲基豆渣膳食纤维制备条件为 :温度40℃ ,固体氢氧化钠用量为 0 3mol/L反应液 ,一氯醋酸用量为 0 2 5mol/L反应液 ,碱化 1h ,醚化 2h。羧甲基取代度为 0 9时 ,豆渣膳食纤维中水溶性膳食纤维的含量为 2 5 0 3 % (约为1∶4)。动物实验表明 ,羧甲基豆渣纤维比原豆渣纤维有更强的降血糖作用。  相似文献   

2.
以大豆渣为原料,采用酶碱法脱脂并结合H2O2脱色的方法制备不溶性膳食纤维。酶碱复合脱脂是先采用碱性脂肪酶再结合氢氧化钠碱处理,对豆渣进行脱脂,随后再进行H2O2脱色。结果表明:在温度50℃、pH值9.5、反应时间2h、酶液浓度120 U/mL、氢氧化钠浓度3%的脱脂优化工艺条件下,以及H2O2浓度0.3 mol/100g干豆渣、pH值为11、温度70℃、水料比15∶1、反应时间1h的脱色优化工艺条件下,可制备得到理想的豆渣不溶性膳食纤维,其白度值为74.51%,脱脂率达到98.81%。  相似文献   

3.
黄豆酱油渣油脂和膳食纤维的制备研究   总被引:1,自引:0,他引:1  
李学伟  朱新贵  刘滢  曾苑玲 《中国酿造》2013,32(10):109-112
黄豆酱油渣是传统酱油酿造后所产生的废渣,富含大豆油脂和膳食纤维。通过正交试验设计研究提取油脂和膳食纤维的条件。提取油脂最佳工艺:料液比(正己烷量∶酱油渣量)2.5∶1,提取时间90min,提取温度60℃,油脂的提取率为44.1%;脱脂酱油渣膳食纤维最佳提取工艺:脱脂酱油渣经酸处理,并水洗至中性后,按料液比10∶1加入浓度4%的NaOH溶液,提取温度60℃,提取时间60min,膳食纤维的提取率为27.0%。对提取产品进行分析,粗油脂颜色较深,过氧化值为2.26mmol/kg,酸价为51.51mg KOH/g;黄豆酱油渣的膳食纤维呈米白色,其溶胀性和持水力分别为3.20mL/g和4.53g/g。  相似文献   

4.
以新疆野山杏为原料,采用酸法、碱法和酸碱共处理法三种化学方法提取不溶性膳食纤维,通过正交实验对影响酸法、碱法、酸碱共处理法三种提取不溶性膳食纤维工艺的主要因素进行了比较研究,并比较其性能特性,获得了三种化学方法提取野山杏果肉不溶性膳食纤维的最佳工艺参数,酸法提取的最佳工艺为:料液比1∶10,酸液浓度3%,提取温度30℃,提取时间80min,在此工艺条件下不溶性膳食纤维的得率为25.4%,持水力为12.0g/g,溶胀性为6.5mL/g;碱法提取的最佳工艺为:料液比1∶10,碱液浓度10%,提取温度30℃,提取时间20min,在此工艺条件下不溶性膳食纤维的得率为24.7%,持水力为13.36g/g,溶胀性为7mL/g;酸碱共处理法最佳工艺参数为:碱处理料液比1∶10,碱处理时间30min,碱浓度10%,酸处理料液比1∶10,酸处理时间90min,在此工艺条件下不溶性膳食纤维的得率为16.5%,持水力为33.2g/g,溶胀性为10.4mL/g。   相似文献   

5.
以豆渣、麦麸、梨渣为原料,接种安卡红曲霉进行液态发酵,研究可溶性膳食纤维(SDF)的制备工艺及特性。结果表明,可溶性膳食纤维的最优发酵条件为豆渣发酵时间7d、料液比1∶15 (g/mL)、接种量13%;麦麸发酵时间6d、料液比1∶15 (g/mL)、接种量14%;梨渣发酵时间6d、料液比1∶20 (g/mL)、接种量14%。发酵后SDF的溶解度、持水力及持油力均得到提高,功能特性得到改善。  相似文献   

6.
以苹果梨渣为原料,研究了NaOH浓度、料液比、处理时间和处理温度对膳食纤维得率的影响。采用正交试验设计,确定了苹果梨渣中膳食纤维的最佳提取工艺,即NaOH浓度0.035%、料液比1∶15(g/mL)、处理时间60 min、处理温度40℃,此时平均提取率可达59.7%。并对该膳食纤维的物化特性进行了研究,结果表明:苹果梨渣膳食纤维的持水力为8.76 g/g、持油力为5.13 g/g、膨胀力为4.00 mL/g、阳离子交换能力换能力为0.54 mmol/g。。  相似文献   

7.
超声波处理对水不溶性膳食纤维膨胀力及持水力的影响   总被引:2,自引:0,他引:2  
采用超声波法对马铃薯渣中的水不溶性膳食纤维(PIDF)进行处理,研究超声功率、超声时间、超声温度及料液比对水不溶性膳食纤维基本性质的影响。通过单因素和正交实验,确定最佳处理条件:膨胀力的最佳工艺条件为料液比1∶10,超声时间50min,超声温度70℃,超声功率70W,膨胀力为20.50mL/g;持水力的最佳工艺条件为料液比1∶15,超声时间40min,超声温度80℃,超声功率70W,持水力为14.81g/g。   相似文献   

8.
本文对豆渣膳食纤维的制备工艺进行了研究。利用生物酶法改性提高豆渣中可溶性膳食纤维(SDF)含量,通过单因素实验和正交实验确定了纤维素酶酶解的最佳工艺。最佳工艺条件为:纤维素酶添加量0.5%,料液比1∶12,温度45℃,pH值4.5,酶解时间1.5h,乙醇沉淀时间1h,在此条件下,豆渣SDF得率可达到8.53%。在此基础上,制得了豆渣膳食纤维粉,其持水力和膨胀性分别为5.0783g/g和8.4675mL/g,色泽呈乳白色,具有豆渣膳食纤维固有的气味和滋味,质量指标达到国家二级标准。  相似文献   

9.
以甘草渣为原料,用水浴加磁力搅拌方法辅助,分别对可溶性和不溶性膳食纤维进行碱提,利用单因素试验和正交试验对提取条件进行优化,确定最佳提取工艺为:料液比1∶9(g/mL)、提取温度40℃、提取时间80 min、氢氧化钠浓度6%时,不可溶膳食纤维得率最大为81.33%;料液比1∶10(g/mL)、提取温度80℃、提取时间80 min、氢氧化钠浓度7%时,可溶膳食纤维得率最大为8.33%。采用理化分析方法,对提取物进行功能特性的测定,测定结果为:不可溶膳食纤维的持水力为3.73 g/g,膨胀力为5.00 mL/g;可溶膳食纤维的溶解度为0.02 g/mL,膨胀力为0.50 mL/g。该研究为提取膳食纤维提供一条新途径,为甘草渣的再利用提供一种新思路。  相似文献   

10.
荞麦皮粉中膳食纤维的制备工艺研究   总被引:1,自引:1,他引:0  
以荞麦皮粉为原料,采用碱法提取膳食纤维,通过单因素及正交试验得出最佳提取工艺条件,并对所得膳食纤维进行性质测定。结果表明,最佳提取工艺条件为:碱解温度80℃,氢氧化钠质量分数1.0%,料液比1:16(g/mL),碱解时间80min。在此条件下膳食纤维得率为20.39%,水不溶性膳食纤维持水力为5.97 g/g,膨胀力为7.4 mL/g,水溶性膳食纤维溶解率为96%。  相似文献   

11.
苹果渣可溶性膳食纤维提取工艺的研究   总被引:3,自引:0,他引:3  
研究采用了酸性及碱性提取法从苹果渣中制备可溶性膳食纤维,利用正交试验设计确定了最佳提取工艺条件,提取酸溶性膳食纤维的最佳工艺条件是pH1.0、温度90℃、液料比15∶1(mL/g)、反应时间60min提取率为17.49%;碱溶性膳食纤维的最佳工艺条件是温度90℃、碱液浓度2.0%、反应时间60min、液料比2∶1(mL/g),提取率可达16.93%。  相似文献   

12.
以雪莲果为材料,采用单因素试验和正交试验对热水浴法制备水溶性膳食纤维的工艺进行优化设计。影响雪莲果中水溶性膳食纤维提取的得率主要因素有:酸的种类、料液比、反应液的pH、提取时间、提取温度。实验表明,雪莲果水溶性膳食纤维的最佳提取工艺条件:盐酸浸提、料液比1∶5(g/g)、pH为6.0、提取时间120 min、温度80℃,此条件下雪莲果水溶性膳食纤维的提取率可达到5.43%。各因素的影响次序为:料液比提取温度反应时间pH。雪莲果水溶性膳食纤维的持水力、膨胀力、结合水力分别为2.676 g/g、1.904 mL/g、1.545 g/g,对不饱和脂肪酸的吸附力为1.370 g/g。  相似文献   

13.
以雷竹笋渣为原料,以1∶1比例混合的保加利亚乳杆菌和嗜热链球菌作为发酵菌种,以液料比、发酵温度、发酵时间、菌种接种量对膳食纤维得率的影响为评价指标,通过单因素试验和正交试验优化发酵法制备雷竹笋渣膳食纤维的工艺条件。结果表明,发酵法制备雷竹笋渣膳食纤维的最佳工艺为:接种量为4%,发酵温度为40 ℃,发酵时间为24 h,液料比为10.0∶1(mL∶g),在此条件下制备的膳食纤维得率为(80.20±0.60)%,其持水力、溶胀性、结合水力以及阳离子交换能力分别为7.68 g/g、5.53 mL/g、5.47 g/g、0.39 mmol/g。雷竹笋渣经发酵后,膳食纤维的纯度和物化性质均得到一定的提高,表明发酵法是一种可行的膳食纤维制备方法。  相似文献   

14.
金针菇菇脚可溶性膳食纤维提取工艺研究   总被引:1,自引:0,他引:1  
吴素蕊  郑淑彦  桑兰  侯波  刘蓓  高观世 《食品工业科技》2012,33(11):300-302,311
采用碱性提取法从金针菇菇脚中制备可溶性膳食纤维,通过对液料比、碱液浓度、提取温度、提取时间及提取次数进行单因素实验,利用正交实验设计确定了最佳提取工艺条件。结果表明:可溶性膳食纤维最佳提取工艺条件为,液料比30∶1mL/g、NaOH质量浓度0.5g/100mL、提取温度50℃、提取时间1h、提取次数2次,提取率为11.4%,所得膳食纤维的持水力为1.495g/g,溶胀性为55.55mL/g。  相似文献   

15.
建立纤维素酶辅助苹果梨渣可溶性膳食纤维的最佳提取工艺。以苹果梨渣为原料,首先研究了料液比、酶添加量、酶解时间、酶解温度对得率的影响。在此单因素实验基础上,优化出了纤维素酶辅助提取苹果梨渣可溶性膳食纤维的最佳工艺参数:料液比1∶17(g/m L),酶添加量60U/g,酶解时间7h和酶解温度49℃,此时可溶性膳食纤维的得率为15.31%。然后对所得可溶性膳食纤维持水力、持油力和膨胀力进行研究发现:所得苹果梨渣可溶性膳食纤维持水力4.72g/g、持油力2.39g/g及膨胀力4.46m L/g。  相似文献   

16.
黄小米中水溶性膳食纤维提取工艺   总被引:1,自引:0,他引:1  
黄小米米糠是生产黄小米的副产品,其含有丰富的膳食纤维,膳食纤维被称为继糖、蛋白质、脂肪、维生素、矿物质和水之后的“第七营养素”,其具有较强的持油、持水力,且具有增溶作用和诱导微生物作用,能预防和辅助治疗多种疾病.本文以黄小米米糠为原料,采用直接水浸提法提取水溶性膳食纤维,首先对影响提取率的因素:提取温度、提取液pH、提取时间、料液比进行了单因素实验,在单因素实验的基础上,采用L9(34)正交试验对黄小米米糠中水溶性膳食纤维提取工艺进行优化.并测定了最佳工艺提取的膳食纤维的持水力和溶胀力.结果表明:黄小米米糠中提取水溶性膳食纤维的最佳工艺条件为提取温度95℃、pH5.0,料液比1∶17mL/g,提取时间70min,可溶性膳食纤维的提取率为14.76%,持水率为7.4g/g,溶胀力为6.25mL/g.  相似文献   

17.
以苹果渣为原料、绿色木霉为菌种,探讨前发酵工艺对苹果渣水溶性膳食纤维的影响。通过单因素试验和正交试验得出最佳前发酵工艺条件为:料液比1∶15(g/mL)、培养温度32℃、发酵初始pH 6.0、接种量10%、培养时间64h,后发酵条件为发酵温度50℃、pH 5.0、发酵时间48h。通过绿色木霉对苹果渣膳食纤维前后发酵改性,总膳食纤维得率达79.8%,水溶性膳食纤维(SDF)含量可达到30.27%。产品呈现淡黄色、颗粒均匀、口感细腻,测定其持水力为7.54g/g,膨胀力为8.62mL/g,均比原苹果渣有较大程度的提升。  相似文献   

18.
花椒籽可溶性膳食纤维的提取工艺研究   总被引:1,自引:0,他引:1  
以脱脂花椒籽为原料,采用单因素实验和响应面法优化酶法提取花椒籽可溶性膳食纤维的工艺研究,并对制得的可溶性膳食纤维的理化性质进行了测定。结果表明,酶法提取花椒籽可溶性膳食纤维的最佳工艺条件为:纤维素酶添加量2.0%,料液比1∶23,酶解温度42℃,酶解时间13 h,酶解pH 4.33,胰蛋白酶添加量0.4%。在最佳工艺条件下,花椒籽可溶性膳食纤维的平均得率为9.19%,持水力为2.33 g/g,膨胀率为2.05 mL/g。  相似文献   

19.
田成  莫开菊  汪兴平 《食品科学》2010,31(14):148-152
为研究磷酸盐改性水不溶性豆渣膳食纤维的工艺条件及膳食纤维结构,以持水性作为特征性考察指标,通过单因素试验、正交试验优化其改性的工艺条件,通过X 射线衍射及电镜观察膳食纤维的结构。结果表明:水不溶性豆渣膳食纤维改性的最佳工艺参数为磷酸氢二钠溶液质量浓度0.1g/100mL、料液比1:60(g/mL)、处理时间1h、处理温度50℃,此条件下的膳食纤维持水性达11.95g/g;磷酸盐改性水不溶性豆渣膳食纤维的结构得到部分改善,表面略有褶皱,结构疏松,带有明显的片状结构,颗粒的表面出现蜂窝状结构,且分布均匀,改性后的水不溶性豆渣膳食纤维在34.76°出现较明显的衍射强度峰,其结晶度为30.57%。  相似文献   

20.
目的:优选薏仁米糠制备膳食纤维工艺,并对其品质进行研究。方法:以薏仁米糠为原料,考察料液比、淀粉酶添加量和碱性蛋白酶添加量对薏仁米糠膳食纤维提取率的影响,并对最优制备条件下所得的膳食纤维进行化学组成和物化特性分析。结果:薏仁米糠膳食纤维最佳工艺条件为料液比(m薏仁米糠∶V)1∶10 (g/mL),淀粉酶添加量100 U/g,碱性蛋白酶添加量100 U/g,此时薏仁米糠膳食纤维提取率为84.39%。薏仁米糠膳食纤维中的不溶性膳食纤维含量明显提高,达64.49%;可溶性膳食纤维含量为0%,水分、脂肪、淀粉和蛋白质含量明显降低;膨胀力、持水力和持油力随温度的增高相应增大,分别为3.12 mL/g、4.02 g/g、4.29 g/g。结论:该方法可作为提取薏仁米糠膳食纤维的可靠方法,具有较大的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号