首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以马铃薯干渣为原料,采用α-淀粉酶和蛋白酶提取膳食纤维后,用纤维素酶对其进行改性,研究酶添加量、p H、酶解温度和酶解时间对马铃薯渣可溶性膳食纤维得率的影响。在此基础上用正交实验优化酶反应的工艺条件。结果表明:酶添加量25 U/g,p H5,酶解温度45℃,酶解2.5 h为最佳反应条件。在此条件下可溶性膳食纤维得率为28.78%,而未用纤维素酶处理的得率为16.18%。通过AOAC 993.19酶-重量法测定马铃薯干渣中可溶性膳食纤维含量由7.01%提高至13.13%。  相似文献   

2.
酶法提取胡萝卜皮渣可溶性膳食纤维的工艺研究   总被引:1,自引:0,他引:1  
以胡萝卜皮渣为原料,采用酶法提取可溶性膳食纤维,探讨加酶量、酶解时间、酶解温度及pH对膳食纤维得率的影响。通过正交试验确定制备胡萝卜皮渣膳食纤维的最佳工艺条件为:纤维素酶添加量为1.2%,酶解温度60℃,酶解pH 4,酶解时间80 min,此条件下胡萝卜皮渣可溶性膳食纤维得率达5.32%,持水力和膨胀力分别为5.25 g/g和5.30 mL/g。  相似文献   

3.
以马铃薯渣为原料,在化学法基础上采用双酶降解法提取水不溶性膳食纤维(IDF),探讨了酶解的工艺条件,并对膳食纤维持水性和持油性进行了研究,结果表明:耐高温α-淀粉酶的最佳酶解条件为酶量80 u/g,温度90℃,p H6.5,时间2 h;木瓜蛋白酶最佳酶解条件为酶量100u/g,温度50℃,p H7.5,时间15 min。在此工艺条件下水不溶性膳食纤维得率为19.0%,且持水力与持油力性能较好,分别为6.63 g/g和2.07 g/g。  相似文献   

4.
响应面法优化半纤维素酶提取梨渣中可溶性膳食纤维工艺   总被引:2,自引:0,他引:2  
以砀山梨渣为原料,采用半纤维素酶水解法从梨渣中提取可溶性膳食纤维,并利用响应面法优化其提取条件。通过单因素试验考察液料比、酶添加量、酶解温度和酶解时间对可溶性膳食纤维提取率的影响。在单因素试验基础上,采用响应面法,利用Box-Behnken试验设计,对酶解工艺中各影响因素进行优化。结果表明,半纤维素酶水解法提取梨渣可溶性膳食纤维的最适提取工艺条件为:液料比13∶1(mL/g)、酶解温度58 ℃、酶解时间5 h、酶添加量35 U/g。在该条件下可溶性膳食纤维的提取率为15.21%,与理论值相差1.1%,表明实测值与理论值之间具有良好的拟合度。梨渣可作为一种优质膳食纤维的原料,半纤维素酶能有效用于梨渣中膳食纤维的提取。  相似文献   

5.
以桑椹酿酒后果渣为原料,使用糖化酶对桑椹果渣进行去糖,通过单因素及正交试验进行桑椹果渣中不溶性膳食纤维提取前去糖工艺条件优化。结果表明,去糖最佳工艺条件为糖化酶2 g/kg、酶解时间90 min、酶解温度63 ℃、pH值为4。  相似文献   

6.
建立纤维素酶辅助苹果梨渣可溶性膳食纤维的最佳提取工艺。以苹果梨渣为原料,首先研究了料液比、酶添加量、酶解时间、酶解温度对得率的影响。在此单因素实验基础上,优化出了纤维素酶辅助提取苹果梨渣可溶性膳食纤维的最佳工艺参数:料液比1∶17(g/m L),酶添加量60U/g,酶解时间7h和酶解温度49℃,此时可溶性膳食纤维的得率为15.31%。然后对所得可溶性膳食纤维持水力、持油力和膨胀力进行研究发现:所得苹果梨渣可溶性膳食纤维持水力4.72g/g、持油力2.39g/g及膨胀力4.46m L/g。  相似文献   

7.
以马铃薯渣为原料制备膳食纤维,用纤维素酶和木聚糖酶对其进行改性处理,以提高可溶性膳食纤维得率。在单因素实验的基础上选取合适的因素及水平,通过响应面法优化2种酶复合使用的工艺条件,得到的最佳条件为:料液比1:15(g/mL)、纤维素酶添加量0.41%、木聚糖酶添加量0.40%、pH5、酶解温度50℃、酶解时间1.55 h。在此条件下,可溶性膳食纤维得率为23.15%,比原马铃薯渣提高10.7%。  相似文献   

8.
以地瓜渣为原料,在单因素的基础上,选取超声功率、酶解时间、超声温度、加酶量四个因素,以地瓜渣不溶性膳食纤维提取率为响应值,采用Box-Behnken响应面法优化超声波辅助酶法提取地瓜渣膳食纤维的工艺条件。结果表明:地瓜渣中不可溶性膳食纤维(insoluble dietary fiber,IDF)提取的最佳工艺条件为:超声功率60 W,酶解时间50 min,超声温度50℃,加酶量0.6%,此时IDF提取率为68.98%,与模型的预期值69.05%基本相符,表明实测值与理论值之间拟合度良好。产品为淡黄色,地瓜渣不溶性膳食纤维持水力和持油力为0.897g/g和0.574g/g。  相似文献   

9.
陶永霞  周建中  武运  于小会 《食品科学》2009,30(20):118-121
以枣渣为原料,采用酶法水解淀粉,碱法水解蛋白质、脂肪的提取方法提取枣渣可溶性膳食纤维,探讨加酶量、酶解时间、碱解pH值、碱解时间、碱解温度等因素对膳食纤维得率的影响。通过正交试验确定了酶碱法制备枣渣可溶性膳食纤维的最佳工艺条件为:糖化酶加酶量为0.4%,纤维素酶加酶量为0.5%、酶解时间60min、碱解pH值为12、碱解温度70℃、碱解时间90min,在此条件下枣渣可溶性膳食纤维得率达11.32%,持水力和溶胀性分别达到848.68%和9.26ml/g。  相似文献   

10.
以新疆骏枣去多糖后枣渣为原料,利用超声-酶解协同作用提取红枣渣不溶性膳食纤维,并采用单因素与响应面分析法对红枣渣不溶性膳食纤维的提取工艺进行优化。进一步以提取的红枣渣膳食纤维为基料,制备高膳食纤维食用粉,考察其促消化作用。结果表明:超声-酶法协同作用提取红枣渣膳食纤维的最佳工艺条件为:加酶量1.5%,料液比1:10 g/mL,超声时间35 min,超声温度70 ℃,在此最优条件下红枣渣膳食纤维提取率可达69.31%±0.91%。红枣渣膳食纤维中总膳食纤维含量在26.5%左右,其中不溶性膳食纤维含量高达21.7%,可溶性膳食纤维含量为4.8%;红枣渣膳食纤维食用粉中剂量(2.7 g/kg)组和高剂量(5.3 g/kg)组给药对小鼠有促进消化和排便的作用。  相似文献   

11.
目的:研究从江蓠藻渣中制备膳食纤维的工艺。方法:采用梯度离心法脱除助滤剂,得到藻渣粗纤维;再以可溶性膳食纤维得率为指标,利用复合植物水解酶对其进行酶解改性,在单因素试验基础上,采用正交试验对酶解工艺条件进行优化。结果:梯度离心条件分别为2500r/min、10min,3500r/min、5min,可得到纯净的藻渣粗纤维,回收率为25.4%,同时回收得到60.2%的助滤剂;藻渣粗纤维酶解改性的最佳工艺条件为料液比1:30(g/mL)、加酶量20FBG/g、pH4.5、酶解时间2.5h、酶解温度55℃,酶解改性后总膳食纤维得率为20.34%(相对于藻渣,干质量计),膨胀力10.25mL/g,持水力541.6%。结论:梯度离心结合复合植物水解酶制备江蓠藻渣膳食纤维可行,可为江蓠藻渣的高值化利用提供理论基础。  相似文献   

12.
采用酶碱法提取马铃薯皮渣中的膳食纤维,并分别设计正交试验对马铃薯皮渣脱色及淀粉水解条件进行了优化研究,结果表明:脱色的最佳工艺条件是用95%乙醇浸提,料液比为1∶4(g/m L),温度为50℃,p H为5,浸提时间为150 min;水解淀粉的最佳工艺是温度为65℃,时间为120 min,料液比为1∶9(g/m L),p H为6.5,酶浓度为0.8%。膳食纤维提取率可达57.00%。  相似文献   

13.
以玫瑰花渣为原料,通过酶-化学法提取膳食纤维,并以可溶性膳食纤维(SDF)得率为评判指标,在单因素试验的基础上通过响应面试验优化提取工艺。结果表明:最佳工艺参数为料液比1∶35(g/mL)、纤维素酶添加量4%(以玫瑰花渣质量为基准)、碱液质量浓度0.045 g/mL、碱解时间60 min,在此条件下玫瑰花渣SDF得率为43.59%。  相似文献   

14.
以椪柑渣为试验原料,采用响应面分析法建立酶法提取椪柑渣中可溶性膳食纤维得率的二次多项数学模型,验证了数学模型的有效性,并探讨了酶添加量、酶解温度、p H值和酶解时间对可溶性膳食纤维得率的作用规律,优化提取工艺参数。试验结果表明:加酶量4.0 m L/100 g,酶解温度50.0℃,p H值5.0,酶解时间8 h,该条件下SDF提取率高达32.53%。采用酶法提取椪柑渣中的可溶性膳食纤维是切实可行的。  相似文献   

15.
采用四级薇菜干磨成粉为原料,研究酶法提取薇菜中不溶性膳食纤维的工艺优化,为合理利用薇菜资源提供参考依据。采用α-淀粉酶酶解薇菜干粉末,以薇菜不溶性膳食纤维提取率为评价指标,进行单因素试验及正交试验,得出薇菜不溶性膳食纤维的最佳工艺条件。结果表明,酶法提取薇菜不溶性膳食纤维的最佳提取条件为料液比1︰20 g/m L、柠檬酸缓冲溶液p H 5.8、α-淀粉酶浓度1.0%、酶解温度30℃、酶解时间4.5 h,在最优条件下薇菜不溶性膳食纤维提取率为74.28%。其持水力在8,12和24 h时分别为3.47,3.87和4.32 g/g;结合水力在2,4和6 h时分别为0.70,0.80和0.84 g。通过单因素正交试验,确定了影响酶法提取薇菜不溶性膳食纤维的主要因素,得出了提取薇菜不溶性膳食纤维的最佳工艺条件,最佳工艺条件下制备的薇菜不溶性膳食纤维的持水力和结合水力性能较好,并且可以为科研上的研究提供基础条件,以及为以后的工业生产提供理论基础。  相似文献   

16.
以马铃薯渣为原料,采用高峰а-淀粉酶和木瓜蛋白酶为混合酶,以还原糖浓度及游离氨基氮浓度为评价指标,在作用时间、酶量、温度等单因素实验基础上,采用Box-Behnken响应面分析法优化提取马铃薯渣膳食纤维的最优条件,并对膳食纤维的基本特性进行测定。结果表明:作用时间80 min,加酶量1.37 m L,温度64℃,在此最优条件下淀粉酶解后还原糖浓度为1.39μg/mL、蛋白质酶解游离氨基氮浓度0.910μg/mL,制得的马铃薯渣膳食纤维其膨胀力3.81 mL/g、持水率3.71 g/g、持油率1.28 g/g。  相似文献   

17.
侯传伟  魏书信  王安建 《食品科学》2009,30(22):119-121
以玉米皮超声提取天然水溶性膳食纤维后的副产物——不溶性玉米皮渣为试材,应用木聚糖酶和纤维素酶组合酶解制备水溶性膳食纤维,采用单因素和正交试验组合研究确立一套由水不溶性膳食纤维改性制备水溶性膳食纤维制备工艺。结果表明,最佳工艺参数为纤维素酶添加量40mg/g 底物、木聚糖酶添加量40mg/g 底物、料液比1:14(g/ml)、酶解时间90min,水溶性膳食纤维得率为5.96%。  相似文献   

18.
谢婧 《食品科技》2015,(4):296-301,308
采用复合植物水解酶结合酸法提取梅州金柚皮中可溶性膳食纤维,以单因素试验为基础,以可溶性膳食纤维提取率为指标,选择酸法适合提取条件,再根据Box-Behnken实验设计原理,通过响应面分析得到酶法提取优化组合条件。得到最佳工艺为:稀硫酸p H3、物料比固定为1:20、酸解温度为50℃,酸解时间2 h,酶解温度为44℃,酶添加量为0.25 mg/g,酶解时间为2 h,此时可溶性膳食纤维提取得率为20.2438 mg/g。膳食纤维的持水力为9.397 g/g,溶胀性为11.25 m L/g,梅州金柚皮可以作为一种优良的膳食纤维来源。  相似文献   

19.
目的:木薯淀粉废弃物木薯渣中含有丰富的膳食纤维,利用酶法提取木薯渣中可溶性膳食纤维,充分利用食品生产中的废弃资源,对于保护环境、降低成本、提高农副产品经济价值具有积极作用。方法:通过单因素实验选取pH、酶解温度、料液比、酶浓度4个因素作为响应面实验的自变量,可溶性膳食纤维得率为响应值,根据Box-Behnken中心组合实验设计原理对选取的4个自变量分别选取3个水平进行响应面实验,研究4种因素及其交互作用对木薯渣中可溶性膳食纤维得率的影响,得到预测的回归方程模型。结果:确定最佳提取工艺条件为pH 5.8,酶解温度48℃,料液比1∶35(g∶mL),酶浓度55 U·g-1。在此条件下可溶性膳食纤维的实际得率为5.392 2 g/10 g原料,与预测值5.256 7 g/10 g的相对误差为2.58%。结论:优化工艺参数可为木薯渣可溶性膳食纤维提取的工业化生产提供参考。  相似文献   

20.
荞麦皮粉中膳食纤维的制备工艺研究   总被引:1,自引:1,他引:0  
以荞麦皮粉为原料,采用碱法提取膳食纤维,通过单因素及正交试验得出最佳提取工艺条件,并对所得膳食纤维进行性质测定。结果表明,最佳提取工艺条件为:碱解温度80℃,氢氧化钠质量分数1.0%,料液比1:16(g/mL),碱解时间80min。在此条件下膳食纤维得率为20.39%,水不溶性膳食纤维持水力为5.97 g/g,膨胀力为7.4 mL/g,水溶性膳食纤维溶解率为96%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号