首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
高洁净度汽车用非调质钢中非金属夹杂物研究   总被引:1,自引:0,他引:1  
刘石虹  王新华  戴观文  梁玫  李宏 《钢铁》2008,43(5):35-39
对ω(T[O])低于0.0010%高洁净度非调质钢中非金属夹杂物进行了研究.发现在LF精炼中,由于采用高碱度炉渣和强扩散脱氧,钢液中铝脱氧生成的含较高Al2O3的夹杂物向镁、钙铝酸盐类夹杂物转变.经VD处理钢液ω(T[O])降低至0.0010%以下后,在钢水试样中已很少观察到氧化物类夹杂存在.在高洁净度非调质钢中存在许多复合夹杂物,中心部位为MnS,而边缘部位为在较低温度下依附在已生成的MnS类夹杂物上析出的TiN等.  相似文献   

2.
安会龙  任英  刘洋  储焰平  张彦辉 《炼钢》2020,36(3):55-61
揭示了弹簧钢全流程中非金属夹杂物的形貌和成分转变。初始钢中夹杂物主要为Al_2O_3-SiO_2-MnO-CaO,合金化后夹杂物转变为MgO-Al_2O_3。随着精炼的进行,夹杂物逐渐转变为Al_2O_3-MgO-SiO_2-CaO。最终铸坯中主要夹杂物为Al_2O_3-MgO-SiO_2-CaO,同时有硫化物和氮化物析出。系统地计算了1 873 K下一元脱氧钢中Al、Si、Mg和Ca与O的热力学平衡关系和二元脱氧钢中Al-Mg、Al-Si、Si-Mn和Al-Mg-Ca脱氧夹杂物的生成区域。可为弹簧钢脱氧过程脱氧剂的加入,钢液中溶解氧含量的控制,以及弹簧钢中不同夹杂物的生成和控制提供理论指导。  相似文献   

3.
曾溢彬  包燕平  赵家七  王敏 《钢铁》2022,57(8):69-77
 某钢厂生产的55SiCr弹簧钢采用硅锰脱氧工艺,但在其冶炼过程中存在大量尖晶石类夹杂物,对最终产品的性能十分不利。尖晶石等硬、脆性夹杂物是弹簧在服役过程中疲劳断裂的主要因素之一,因此为明确弹簧钢中该类夹杂物的来源,进而控制并去除钢中非金属夹杂物,通过夹杂物自动分析、扫描电镜和能谱分析等手段,结合FactSage热力学计算分析了55SiCr弹簧钢冶炼过程夹杂物的演变及主要夹杂物的形成机理。分析结果表明,LF精炼后钢中夹杂物数量大幅上升,且其平均成分偏向SiO2-Al2O3-CaO三元相图中高熔点区域;夹杂物主要以SiO2·Al2O3·CaO·MgO为主,多表现为钙铝酸盐包裹或半包裹尖晶石的复合夹杂物类形态,此外还有少量单独的尖晶石夹杂物存在于钢中。对于上述夹杂物的形成及演变进行热力学计算,结果表明,钢液中Mg、Al含量上升将导致钢中析出大量尖晶石夹杂物,并与液态夹杂结合形成含镁复相夹杂物;同时,钢液成分的变化也会导致精炼过程生成的SiO2·Al2O3·CaO·MgO类夹杂物中MgO、Al2O3含量大幅增加,在复合夹杂物内部析出尖晶石相。因此,为减少硅锰脱氧弹簧钢中尖晶石类硬脆性夹杂物的生成,需要严格控制钢中Mg、Al含量,尽可能降低夹杂物中MgO、Al2O3含量,以实现对弹簧钢中非金属夹杂物的塑性化控制。  相似文献   

4.
刘浏  范建文  王品  王乐 《钢铁》2017,52(9):34-41
 为了控制轴承钢中大型夹杂物,采用在LF精炼初渣中添加示踪剂的方法, 确定轴承钢大型夹杂物的来源。 初期脱氧夹杂一直悬浮在钢中,未与炉渣接触,不含BaO成分,在钢中残留量占全部氧化物夹杂的10%~15%;内生夹杂由渣钢反应生成,随精炼进行,含BaO夹杂的比例升高。无渣冶炼如RH可抑制该类夹杂生成,在钢中残留量约占25%~40%;卷渣夹杂由钢渣搅动生成,绝大多数含有BaO成分,随精炼进行尺寸逐渐减小,残留在钢中的比例约占50%~60%。因此,降低钢中大型夹杂物的技术措施是严格控制脱氧前钢水的氧活度[aO,]降低[w(T[O]);]尽可能避免或减弱渣钢反应强度,或降低精炼渣的还原势;优化钢水搅拌强度,减少卷渣并促进微细夹杂物聚合上浮。  相似文献   

5.
齐江华  吴杰  索进平  陈钢  田青  吉玉 《钢铁》2011,46(3):18-21
以U75V高速重轨为例,对冶炼过程的全氧含量和夹杂物的形貌、尺寸及成分进行了系统分析,对重轨钢精炼过程的脱氧与夹杂物控制进行了探讨.结果表明,炉渣碱度高有利于Si的脱氧,LF精炼后可将钢中全氧质量分数降至15×10-6以下,但高碱度会导致钢中脆性夹杂物增多;高真空虽然对碳脱氧有利,但易引起钢中铝含量升高,不利于夹杂物的...  相似文献   

6.
王媛婷  杨峥 《钢铁研究》2015,43(1):9-11
为了研究马钢转炉冶炼与电炉冶炼在非金属夹杂物控制水平方面的差异,利用ASPEX夹杂物分析仪分别对转炉钢与电炉钢轧制环件进行了夹杂物定量检测分析。结果表明:电炉钢轧制环件中单位面积内的夹杂物数量约为8.0个/mm2,而转炉钢轧制环件中单位面积内的夹杂物数量为17.6个/mm2;电炉钢中超过10μm的大尺寸夹杂物约占夹杂物总数的2.84%,而转炉钢试样中10μm以上的夹杂物约占夹杂物总数的4.85%。虽然电炉钢的洁净度优于转炉钢,但电炉钢10μm以上大尺寸夹杂物中脆性夹杂物的比例明显高于转炉钢,提高电炉钢中脆性夹杂物的控制水平仍是今后电炉钢冶炼控制的重点。  相似文献   

7.
在真空感应炉中采用了真空碳脱氧再加钛终脱氧的脱氧工艺冶炼出了与高级别管线钢成分接近的试样钢,对钛脱氧钢中超细夹杂物的外部形貌、尺寸、内部结构和物相组成等进行了研究。在扫描电镜下通过对金相试样和电解提取的夹杂物的研究表明,钢中夹杂物是Ti-O-Mn-S形成的尺寸为1~3μm的球形复合夹杂物。通过离子减薄后观察了夹杂物的内部结构,中心是Ti-O化合物,外围是Mn-S化合物;通过电子背散射衍射(EBSD)对夹杂物物相组成的分析表明,该复合夹杂物是有利于针状铁素体(IGF)形核的Ti2O3和在凝固过程中以Ti2O3为核心形核的MnS。  相似文献   

8.
王章印  姜敏  王新华 《钢铁》2022,57(2):63-72
冶炼Q345D钢时由于夹杂物导致的探伤不合格情况时有发生,为了进一步去除和控制钢中非金属夹杂物,通过工业试验研究了"LF精炼→RH真空精炼→钙处理→软吹→连铸"工艺中的夹杂物生成及演变规律,并通过热力学计算优化钙处理工艺.结果 表明,转炉炉后及LF进站时采用铝强脱氧,夹杂物主要为Al2O3,LF精炼过程采用高碱度、强还...  相似文献   

9.
张立峰 《炼钢》2019,35(3):1-12
首先从高品质钢的洁净化、精准化、均质化和细晶化四个方面引申出了钢中非金属夹杂物的问题,阐述了"非金属夹杂物不是钢的所有问题,但所有钢都有非金属夹杂物的问题"、"非金属夹杂物是钢的天然成分,可以通过研究非金属夹杂物的生成机理来确定其控制方略,进而改善钢的质量"等重要观点。讨论了总氧含量(T.O)作为钢洁净度指数的不足之处,进而提出了钢的洁净度指数(I_c=xT.O+y(Al_2O_3)),即对于铝脱氧钢,式中y为零,夹杂物的控制主要强调钢中T.O含量要低;对于硅锰脱氧钢,式中x为零,夹杂物的控制主要强调夹杂物中的Al_2O_3含量要低。基于此洁净度指数,总结了多种钢的洁净度和非金属夹杂物的控制目标。文中还讨论了稳态浇铸与非稳态浇铸对钢洁净度的影响,提出了钢水洁净度水平最好的情况是非稳态持续时间短,且钢中非金属夹杂物控制水平好。最后讨论了钢中非金属夹杂物数量和个数表征的几个经典问题,包括如何计算夹杂物的平均含量和平均尺寸、夹杂物尺寸组的大小和数量的关系、如何把二维的夹杂物尺寸分布结果转化为三维的结果。  相似文献   

10.
摘要:为了研究不同脱氧方式对高铝钢中非金属夹杂物的影响,采用高温试验和热力学计算相结合的方法,对比分析了先SiMn后Al和先Al后SiMn两种脱氧方式下高铝钢中夹杂物形貌、类型、数量和尺寸特征。结果显示:先加入SiMn后,生成大量液态球形的Mn-Si-Al-O系复合夹杂物,再加入Al后夹杂物演变为Al2O3,且夹杂物数量明显减少;采用先Al后SiMn脱氧方式时,高铝钢中夹杂物始终以Al2O3为主,夹杂物最终数量相对较低。2种脱氧方式钢中夹杂物平均等效圆直径和尺寸分布相差不大。此外,采用先SiMn后Al进行脱氧时,发现尺寸较小的AlN颗粒附着在Al2O3夹杂物表面形成Al2O3-AlN复合夹杂物。而采用先Al后SiMn脱氧方式时,高铝钢中发现单一AlN夹杂物和Al2O3-AlN复合夹杂物,AlN夹杂物的形成与钢水中的氧势和合金原料有关。  相似文献   

11.
为明确冶炼过程齿轮钢中非金属夹杂物的演变行为,实现齿轮钢中夹杂物特性的有效控制和提高产品质量,以20CrMnTi齿轮钢为研究对象,通过对LF-VD-CC工艺齿轮钢生产过程的取样分析,利用扫描电子显微镜对冶炼过程不同阶段的夹杂物成分、形貌、尺寸和数量等特性进行系统分析研究。结果表明,LF进站时,夹杂物主要为脱氧产物Al2O3-(MnS)和少量的镁铝尖晶石夹杂物;LF化渣后至精炼末期,由于渣/钢反应和耐火材料侵蚀带入的MgO和CaO等,导致夹杂物转变为Al2O3-MgO-MnS-CaS和Al2O3-MgO-CaO;VD精炼过程中夹杂物的类型基本不变,但从VD破空到铸坯过程,Al2O3-MgO-CaO夹杂物基本消失,试样中的夹杂物类型主要为Al2O3-MgO-MnS-CaS和TiN-MnS夹杂物。  相似文献   

12.
为了阐明稀土变质高洁净轴承钢中夹杂物的行为,进而优化轴承钢的稀土处理过程,通过向高洁净轴承钢中加入高纯稀土的方法,借助SEM、EDS和EPMA等观察和分析手段,重点对不同稀土含量轴承钢中夹杂物类型和析出行为进行表征和分析。研究结果表明,在不完全变质条件下,微量稀土能够优先变质钢中长条状MnS为RE3S4颗粒,RE3S4可在冶炼时独立析出或以Al2O3为核心析出,也能在凝固时与MnS以RE3S4·yMnS (y<1)复杂夹杂物的形式共同在Al2O3基底上形成。随着稀土含量的增加,在完全变质条件下,稀土元素与夹杂物的形成元素的结合序列依次为O、S、As、P和C,夹杂物类型演化序列为RE2O3、RE2O2S、RES、RE-S-As、RE-As(-P)/RE-O-As(-P)、RE-P-C/RE-O-P(-C)和RE-O-C。  相似文献   

13.
为了研究SWRCH45K冷镦钢在精炼和连铸过程中夹杂物形成和变化规律,在相关工序取钢样和渣样,采用SEM-EDS检测了钢中夹杂物形貌和成分,并结合夹杂物自动分析仪统计了夹杂物数量和尺寸分布。结果表明,LF精炼达到了较好的脱硫和脱氧效果,但钙处理后软吹流量过大造成钢水二次氧化,钢中夹杂物、氮和氧含量有所升高。LF进站时以Al2O3系和MgO-Al2O3系夹杂为主,在精炼渣的作用下,夹杂物转变为CaO-Al2O3系和CaO-MgO-Al2O3系。钙处理后,夹杂物中MgO含量明显降低,CaO含量升高,到中间包工序时钢中夹杂物已基本处于低熔点区。铸坯中夹杂物数量较少,主要为Al2O3-CaS、CaO-Al2O3-CaS和MgO-Al2O3-CaS夹杂物。  相似文献   

14.
为了探究37Mn5钢生产过程中夹杂物的行为演变过程,减少钢中非金属夹杂物的数量,针对国内某钢厂生产37Mn5钢管所采用的BOF-LF-VD-CC工艺流程取不同工位的钢样,分析夹杂物数量、尺寸、成分的变化规律。结果表明,LF出站后的夹杂物类型主要包含两种,MnS夹杂物和MnS-Al2O3夹杂物;VD出站后夹杂物多为MnS夹杂物、Al2O3-CaO-MgO、Al2O3-CaO-MgO-CaS复合夹杂物,夹杂物数密度相比于LF出站下降了21.54%,平均尺寸降低了57.05%,同时夹杂物形状由不规则变为球形,这说明VD有良好的精炼效果。中间包中夹杂物数量增加,可能是由于发生了二次氧化,应选择成分合理的保护渣,提高钢液质量。  相似文献   

15.
为研究石油套管钢(34Mn6)中夹杂物的演变规律,对钙处理效果进行精准化控制,进行全流程取样分析,通过采用SEM-EDS分析夹杂物形貌和成分,同时结合Aspex夹杂物自动分析仪统计夹杂物的数量、成分和尺寸分布。研究结果表明,LF精炼具有较好的脱硫与脱氧能力;钙处理前,由于渣钢反应的进行,夹杂物数量明显减少,夹杂物成分中SiO2含量增加;经过钙处理后,夹杂物成分发生显著变化,由MgO-Al2O3系转变为MgO-Al2O3-CaO系和SiO2-Al2O3-CaO系,夹杂物形貌由尖角夹杂向球状夹杂过渡。在铸坯中,夹杂物数量减少,其成分已偏离液相区,向富CaO区域移动。对钙处理进行优化,通过利用热力学软件FactSage进行计算,得出钢液中钙的质量分数稳定在0.001 3%时对夹杂物的改性效果最佳,钢液中的夹杂物控制较好。  相似文献   

16.
采用扫描电镜观察了含钛焊丝钢中夹杂物的形貌与组成,重点分析了冶炼过程中夹杂物的形成和演变规律。结果表明,LF进站前的夹杂物主要类型为球形的SiO2-Al2O3复合夹杂物,其尺寸在6 μm左右;在LF精炼中,SiO2-Al2O3型夹杂物转变为不规则椭球形SiO2-Al2O3-CaO型夹杂物,其尺寸为5~10 μm。且随着精炼的进行,夹杂物的数量密度由LF进站前的131.81变成最终出站时的42.84个/mm2。在钢水精炼期间,夹杂物成分由最初的w(Al2O3)<20%的区域向CaO含量升高的区域移动,Al2O3的质量分数为20%~35%;LF精炼结束后的夹杂物类型除了SiO2-Al2O3-CaO外,还存在较多的近球形SiO2-Al2O3-CaO-MgO与形状不规则的SiO2-Al2O3-CaO-MgO-TiOx系夹杂物。另外,在铸坯中的复合氧化夹杂物的外层还发现有TiN夹杂物析出。夹杂物成分最终在铸坯中停留在w(Al2O3)<25%的区域,数量密度降低到27个/mm2左右。  相似文献   

17.
针对管线钢夹杂不合的问题,提出了管线钢夹杂物控制目标为Al2O3-CaS系固态夹杂物,并系统研究了钢液成分对此类夹杂物生成的影响与定量关系。研究结果表明,钙处理后Al2O3-CaS夹杂物存在两种形成机理,通过调整Ca、S、T[O]成分可实现对不同类型夹杂的精确控制。随着钢中Ca/T[O]质量分数比的增加,夹杂物中Al2O3含量显著降低;当Ca/T[O]质量分数比小于0.5时,钢中夹杂物主要以Al2O3夹杂为主;当Ca/T[O]质量分数比介于0.5~1.5之间时,夹杂物主要以Al2O3-CaS复合夹杂物为主;当Ca/T[O]质量分数比大于1.5时,夹杂物主要以CaO-CaS复合夹杂物为主。工艺优化后,高级别管线钢夹杂物初检不合格率由3.12%降低至1.54%,高级别管线夹杂物评级全部不大于1.5的比例由90%提高至95.4%。  相似文献   

18.
以韶钢BOF-ARS (氩站)-LF-RH-CC工艺路线生产GCr15轴承钢为研究背景,采用水浸超声探伤缺陷定位解剖、夹杂物金相显微镜与扫描电镜检验、全冶炼-连铸过程跟踪取样相结合的方法,研究了大尺寸夹杂物的特征和来源,并提出改进工艺。研究结果表明,大尺寸夹杂物主要有两类,一类是含6%~7%SiO2(质量分数)的低熔点CaO-MgO-Al2O3-SiO2类大颗粒微观夹杂,尺寸分布在50~500 μm范围,另一类是不含SiO2的CaO-MgO-Al2O3类宏观夹杂,尺寸不小于500 μm。前者的主要来源为出钢的过程采用高黏度的低碱度渣与高熔点的石灰混加所引起的化渣不均匀而导致的卷渣;后者主要因为LF精炼工序添加的大量的铝钙精炼渣难以及时熔化而被卷入到钢液内部所导致。因此,精炼渣的设计和造渣工艺优化是改进上述大尺寸夹杂物的关键。改进后造渣工艺为,出钢过程中用钙铝精炼渣取代低碱度渣,并减少LF精炼工序外加的渣料,控制炉渣二元碱度(w(CaO)/w(SiO2))在5~9范围,Al2O3质量分数为23%~28%。改进后炉渣流动性好,水口结瘤现象得到改善,轧材中主要为细小的MgO-Al2O3尖晶石及复合硫化物类夹杂,成品探伤合格率得到有效提升。  相似文献   

19.
为研究LF-RH精炼工艺生产Q690钢时不同钙处理时机下夹杂物特征的变化,开展工业试验对RH精炼前后钙处理炉次取样进行定量分析对比。钙处理后夹杂物中CaO质量分数持续增加,CaS质量分数瞬态增加,夹杂物熔点降低。RH精炼前钙处理炉次中,RH精炼过程夹杂物的成分接近低熔点区,结束时夹杂物数量密度和面积分数分别为15个/mm2和0.01%。RH精炼后钙处理炉次中,RH精炼过程夹杂物依旧为高熔点Al2O3-MgO类型,结束时夹杂物数量密度和面积分数分别降至1个/mm2和0.002 5%。RH精炼前钙处理会使RH精炼过程夹杂物熔点以及夹杂物与钢液间的接触角降低,导致夹杂物去除驱动力降低,从而抑制夹杂物的去除。因此LF-RH精炼工艺生产铝脱氧钢时,为提高精炼过程钢中非金属夹杂物的去除效率,应在RH精炼后进行钙处理操作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号