首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic activity of supported Pd metal catalysts (Pd metal deposited on carbon, alumina, gallia, ceria or thoria) showing almost no activity in the liquid-phase direct oxidation of H2 to H2O2 (at 295 K) in acidic medium (0.02 M H2SO4) can be increased drastically by oxidizing them using different oxidizing agents, such as perchloric acid, H2O2, N2O and air. In the case of the Pd/carbon (or alumina) catalyst, perchloric acid was found to be the most effective oxidizing agent. The order of the H2-to-H2O2 conversion activity for the perchloric-acid-oxidized Pd/carbon (or alumina) and air-oxidized other metal oxide supported Pd catalysts is as follows: Pd/alumina < Pd/carbon < Pd/CeO2 < Pd/ThO2 < Pd/Ga2O3. The H2 oxidation involves lattice oxygen from the oxidized catalysts. The catalyst activation results mostly from the oxidation of Pd metal from the catalyst producing bulk or sub-surface PdO. It also caused a drastic reduction in the H2O2 decomposition activity of the catalysts. There exists a close relationship between the H2-to-H2O2 conversion activity and/or H2O2 selectivity in the oxidation process and the H2O2 decomposition activity of the catalysts; the higher the H2O2 decomposition activity, the lower the H2-to-H2O2 conversion activity and/or H2O2 selectivity.  相似文献   

2.
Catalytic activity of a 1 wt% Au/TiO2 catalyst is markedly improved by loading a large amount of FeOx, on which the oxidation of CO in excess H2 is selectively promoted at temperature lower than 60 °C. Oxidation of CO with O2 on the FeOx/Au/TiO2 catalyst is markedly enhanced by H2, and H2O moisture also enhances the oxidation of CO but its effect is not so large as the promotion by H2. We deduced that activation of Au/TiO2 catalyst by loading FeOx is not caused by the size effect of Au particles but a new reaction path via hydroxyl carbonyl intermediate is responsible for the superior activity of the FeOx/Au/TiO2 catalyst.  相似文献   

3.
The promotional effects of CO2 and Ni were studied on Co/Mn/Br catalyst in the liquid-phase oxidation of p-xylene to terephthalic acid using molecular oxygen as an oxidant and acetic acid as a solvent individually as well as in combination. The enhanced activity of Co/Mn/Br catalyst was observed on both CO2 and Ni promoters independently and also in combination. The activity enhancement in the combination of CO2 and Ni promoters on this catalyst is found to be remarkable.  相似文献   

4.
Catalytic combustion of volatile organic compounds (VOCs) was investigated on supported precious metal catalysts. The activities for the combustion of methane and acetaldehyde were closely related to the reducibility of the precious metal oxides of the catalysts. On the other hand, light-off temperatures for toluene combustion on PdO/Al2O3, PdO/SnO2, and PdO/CeO2 were around 200 °C, although PdO/ZrO2 showed a higher temperature of 240 °C. This result indicated that light-off temperatures depend on not only the catalytic activities but also the catalyst structure because of low concentration of toluene and weak interaction between catalysts and toluene. In this experiment, the PdO/SnO2 catalyst showed highest activity for the combustion of methane and VOCs.  相似文献   

5.
Simultaneous IR spectroscopic and catalytic measurements have been performed in order to investigate the nature of adsorbed species involved in the formation of N2O on Rh/Al2O3 in the course of the CO + NO reaction. Only nitrosyl species have been isolated that could be involved in the formation of N2 and N2O in accordance with previous kinetic investigations [Granger et al. J. Catal. 175(1998) 194]. Sequential and simultaneous NO and CO exposures lead to the observation of different nitrosyl species that could act as intermediates in the formation of N2 and N2O. Correlations between the appearance/disappearance of Rh(NO) + species and an extra formation of N2O have been established.  相似文献   

6.
A comparative study of the syntheses of unsupported WS2 and M/WS2 (M = Co, Ni) catalysts by ex situ/in situ decomposition of ammonium thiotungstate (ATT) is herein reported. Ex situ activation was performed under a H2S (15% volume)/H2 flow, whereas in situ activation consists in the direct decomposition of ATT or Co(Ni)/ATT precursors in the presence of a hydrocarbon solvent during the hydrodesulfurization (HDS) of dibenzothiophene (DBT). Precursors were characterized by thermogravimetric analysis and final catalysts by X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area (BET). Catalysts activated using the in situ mode of activation present higher specific surface areas with the noticeable exception of the Ni/ATT precursor. Activity measurements showed that the in situ activated WS2 and Ni/WS2 catalysts exhibit higher activity than the ex situ activated catalysts.  相似文献   

7.
Silica hollow spheres were synthesized by sol–gel process using carbon microspheres as templates, and used as supports for CuO/SiO2 catalysts. The samples were characterized by TEM, nitrogen adsorption–desorption, XRD and TPR, and furthermore, the catalytic performance for CO oxidation was approached. The results indicated that the catalytic activity of CuO supported on SiO2 hollow spheres exhibited much higher as compared to that supported on commercial SiO2. Enhancement of the catalytic activity may be attributed to the fact that the unique hollow spherical texture should facilitate the formation of main active species and gas diffusion in catalysts.  相似文献   

8.
A new route of methane utilization is presented, in which methane is converted to H2, CO and C2H4 simultaneously with equal mole ratio, in order that the produced mixture could be used in the synthesis of propanal via hydroformylation. Kinetically controlled free radical gas phase methane oxidation was combined with its catalytic oxidative coupling over Mn/Na2WO4/SiO2 to concomitantly acquire ethylene and syngas with close concentration. Under the optimal reaction condition, a mole ratio of CO:H2:C2H4=1.0:1:0.9 was obtained with a yield of 11.6% and a selectivity of 68% to the target products based on C, while the selectivity to CO2 is as low as 18.1%.  相似文献   

9.
The catalytic performances of Fe-zeolites having MFI structures and in which the Fe introduced either by ion exchange or during the hydrothermal synthesis has undergone partial framework to extra-framework migration induced by controlled heat treatment are reported. In particular, the catalytic behavior as function of time-on-stream and the formation of carbonaceous species were studied. The results suggest that only a small fraction of the iron is active in the selective oxidation of benzene to phenol in the presence of N2O. It is suggested that the active fraction is formed by isolated iron ions in a pseudo-octahedral configuration with the sites positioned in hydroxyl nests (defects) of the zeolite and is selective in phenol formation as a result of in situ reduction during the catalytic tests. Two possible pathways of carbonaceous species were identified, the first through the intermediate further hydroxylation of phenol and the second through the coupling of phenol with benzene or another phenol molecule. This second pathway is the dominant mechanism of formation of carbonaceous species, although the relative rate of the two pathways depends on the zeolite characteristics and iron loading. It is also suggested that the second pathway depends on the strong chemisorption of phenol, probably on Lewis acid sites, which hinders the fast back-desorption of phenol out from the zeolite channels and thus favors the formation of carbonaceous species. Catalysts prepared by hydrothermal treatment show a lower rate of deactivation than those prepared by ion exchange, although the latter show a comparable productivity to phenol for amounts of iron in extra-framework positions around 20 to 30 times lower. The results also indicate that the presence of Al in the zeolite framework is beneficial for reducing the rate of deactivation as compared to that of Fe-silicalite samples.  相似文献   

10.
A survey is given of the catalytic methods potentially available for the production of adipic acid by the oxidation of readily available hydrocarbon precursors under environmentally benign conditions. Encouraging results are reported using H2O2 as oxidant and microporous FeAlPO-5 as catalyst at moderate temperatures.  相似文献   

11.
CO2 reforming of methane was performed on Pt/ZrO2 and Pt/Ce-ZrO2 catalysts at 1073K under different reactions conditions: (i) atmospheric pressure and CH4:CO2 ratio of 1:1 and 2:1; (ii) in the presence of water and CH4:CO2 ratio of 2:1; (iii) under pressure (105 and 190 psig) and CH4:CO2 ratio of 2:1. The Pt supported on ceria-promoted ZrO2 catalyst was more stable than the Pt/ZrO2 catalyst under all reaction conditions. We ascribe this higher stability to the higher density of oxygen vacancies on the promoted support, which favors the cleaning mechanism of the metal particle. The increase of either the CH4:CO2 ratio or total pressure causes a decrease in activity for both catalysts, because under either case the rate of methane decomposition becomes higher than the rate of oxygen transfer. The Pt/Ce-ZrO2 catalyst was always more stable than the Pt/ZrO2 catalyst, demonstrating the important role of the support on this reaction.  相似文献   

12.
A solvent-free method of preparation of a vanadium(V) phosphate is described and discussed. Reaction of V2O5 with H3PO4 in the absence of water at 150°C leads to the formation of a new catalytic material that is designated as anhydrous VOPO4. The material readily hydrates to form VOPO42H2O and has been characterised using powder X-ray diffraction, in situ Raman spectroscopy and 31P MAS NMR spectrometry. On activation in dry N2 followed by reaction with butane/air another novel material is formed that has an intrinsic activity for maleic anhydride that is similar to catalysts derived from VOHPO40.5H2O under comparable conditions. Activation of VOPO42H2O under comparable conditions leads to the formation of I-VOPO4 which exhibits no partial oxidation activity. Reaction of anhydrous VOPO4 with alcohols leads to the exclusive formation of VO(H2PO4)2 in further contrast to VOPO42H2O which under similar conditions leads to the synthesis of VOHPO40.5H2O.  相似文献   

13.
CuO/Ce0.8Zr0.2O2 and CuO/CeO2 catalysts were prepared via a impregnation method characterized by using FT-Raman, XRD, XPS and H2-TPR technologies. The catalytic activity of the samples for low-temperature CO oxidation was investigated by means of a microreactor-GC system. The influence of the calcination temperature and different supports on the catalytic activity was studied.  相似文献   

14.
Six standard clays, before and after calcination at 3 or 4 temperatures and being mixed with Ca(OH)2 [CH] in the presence of simulated cement pore solution, and with ordinary Portland cement, respectively, were studied in detail. Chemical compositions of most clays conform well to the requirement in ASTM C 618. Water demand of clay-containing mortar varies, depending on the crystal chemistry of raw clays, and on the specific surface area of calcined clays. Measurements of XRD background or alkali soluble Si are rapid methods in evaluation of the pozzolanic activity of clays. Compressive strength of mortars based on the raw clays is affected by structure of clays. Calcination increases the pozzolanic activity of clays and the compressive strength of the Portland cement — clay mortars. A close correlation exists between compressive strength of mortars and particle size distribution of the dehydroxylated clays. The most common reaction products of clay — CH mixtures are C-S-H2 and C4AHx, while C2ASHj8 and C3AH6 were also detected with clays rich in Al.  相似文献   

15.
The products of reactions occurring in a CH4–O2–NO x mixture have been investigated by in situ FTIR spectroscopy. The results show that low temperatures favor the formation of HCHO and CH3OH, while high temperatures favor that of C2H4. Possible reaction mechanisms based on the in situ observations are briefly discussed.  相似文献   

16.
Liquid phase acylation of benzene by acyl chloride (e.g., benzoyl chloride, butyryl chloride or phenyl acetyl chloride) over InCl3, GaCl3 and ZnCl2 supported on commercial clays (viz. montmorillonite-K10, montmorillonite-KSF and kaolin) or high silica mesoporous MCM-41 at 80°C has been investigated. The Mont.-K10 and Si-MCM-41 supported InCl3 and GaCl3 catalysts showed high activity in the acyation of benzene by benzoyl chloride even in the presence of moisture in the reaction mixture. The redox function of the supported InCl3, GaCl3 or ZnCl2 catalysts seems to play a very important role in the acylation process.  相似文献   

17.
Both the conversion and H2O2 selectivity (or yield) in direct oxidation of H2-to-H2O2 (using 1.7 mol% H2 in O2 as a feed) and also the H2O2 decomposition over zeolite (viz. H-ZSM-5, H-GaAlMFI and H- ) supported palladium catalysts (at 22 °C and atmospheric pressure) are strongly influenced by the zeolite support and its fluorination, the reaction medium (viz. pure water, 0.016 M or 1.0 M NaCl solution or 0.016 M H2SO4, HCl, HNO3, H3PO4 and HClO4), and also by the form of palladium (Pd0 or PdO). The oxidized (PdO-containing) catalysts are active for the H2-to-H2O2 conversion and show very poor activity for the H2O2 decomposition. However, the reduced (Pd0-containing) catalysts show higher H2 conversion activity but with no selectivity for H2O2, and also show much higher H2O2 decomposition activity. No direct correlation is observed between the H2-to-H2O2 conversion activity (or H2O2 selectivity) and the Pd dispersion or surface acidity of the catalysts. Higher H2O2 yield and lower H2O2 decomposition activity are, however, obtained when the non-acidic reaction medium (water with or without NaCl) is replaced by the acidic one.  相似文献   

18.
Pt/CoAl2O4/Al2O3, Pt/CoOx/Al2O3, CoAl2O4/Al2O3 and CoOx/Al2O3 catalysts were studied for combination CO2 reforming and partial oxidation of CH4. The results indicate that Pt/CoAl2O4/Al2O3 is the most effective, and XRD results indicate that Pt species are well dispersed over the Pt/CoAl2O4/Al2O3. High dispersion is related to the presence of CoAl2O4, formed during calcining at high temperature before Pt addition. In the presence of Pt, CoAl2O4 in the catalyst could be reduced partially at 973 K. Based on these results, it appears that zerovalent platinum with high dispersion and zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity in the Pt/CoAl2O4/Al2O3 catalyst.  相似文献   

19.
F. Gracia  W. Li  E.E. Wolf 《Catalysis Letters》2003,89(3-4):235-242
From EXAFS (extended X-ray absorption fine structure) analysis, gold was found to have mainly oxygen in its nearest coordination shell in the fresh Au/-Al2O3 catalyst prepared by AuCl3 impregnation and vacuum drying at room temperature. After thermal treatment under helium, chlorine appeared within the nearest neighbors of gold and more chlorine showed up as the treatment temperature was increased from 323 to 473K. No reduced Au species was observed up to 473K under He. However, the gold became reduced during CO oxidation at 373K and above. The precursor AuCl3 was found to deposit on -Al2O3 via bonding to surface hydroxyl groups. This catalyst showed nearly 100% CO conversion at 573K, but a very low activity at 373 K under the conditions used in this study. Neither the residual chlorine nor the extent of reduction can explain the low activity at lower temperatures.  相似文献   

20.
The oxidation state and the structural properties of Al2O3-supported bimetallic PdCu catalysts during the catalytic reduction of KNO3 carried out in the aqueous phase were investigated by X-ray absorption spectroscopy. Under reaction conditions the noble metal component (Pd) was in a reduced state, while the less noble metal (Cu) was found to be partially oxidized. A PdCu phase was formed in the bimetallic catalysts, which appears to be located in small domains on the surface of Pd rich particles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号