首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
针对传统车载芯片中高压型低压差线性稳压器(LDO)的负载电流小、电源抑制比低、瞬态响应差等问题,提出了一种增强型高压LDO,通过一种新型高压预调制电路,提高了高压LDO的电源抑制比;通过一种新型摆率增强电路,改善了高压LDO的瞬态响应。电路基于BCD-120 V CMOS工艺完成建模,仿真结果显示,电压可调范围为5.5~55 V,输出5 V;负载电流为800 mA;低频电源抑制比为96 dB;1μs内负载电流从1 mA跳变到800 mA时,输出端最大上冲电压为26.6 mV,响应时间为8μs;下冲电压为45.4 mV,响应时间为7μs,满足车规级局域互联网(LIN)总线中高压LDO的性能要求。  相似文献   

2.
基于双环路控制构建推挽结构,增强了功率管栅端的摆率,改善了无片外电容LDO的瞬态响应。此外,结合A类复合放大器特性,降低了功率管栅端阻抗,有利于提升LDO的频率稳定性。该LDO输入电压范围为2.0~3.5 V,输出电压为1.8 V,最大负载电流为100 mA。当负载电流在1 μs内从100 μA跳变到100 mA以及从100 mA跳变到100 μA时,最大下冲电压为128 mV,最大上冲电压为170 mV,建立时间分别为2.5 μs和2.4 μs,电路工作时消耗的静态电流仅为12.6 μA。  相似文献   

3.
基于0.13μm工艺设计的低功耗无片外电容LDO,文中采用动态自偏置技术使电路根据负载变化,提供不同的偏置电流,实现两级和三级结构下相互转化。电路采用Cascode Miller补偿,实现高稳定性。输出端加入过冲抑制电路,优化瞬态响应。仿真得到压差电压为57 mV;在-55~125℃范围内,温漂系数为27 ppm/℃;在电源电压1.2~3.3 V和负载100 nA~50 mA的变化范围内,线性调整率为0.452 mV/V,负载调整率为0.074 mV/mA。满载50 mA和电源电压1.2 V时,电源抑制比-53 dB@100 kHz,环路相位裕度大于60°。负载100 nA时静态电流2.5μA。负载瞬态响应结果展示过冲电压小于50 mV,建立时间约420 ns。此电路可调节性强,作为低功耗芯片,有着优秀的稳定性,适用于便携式产品。  相似文献   

4.
设计了以增强型AB跟随器作为缓冲级的带瞬态增强电路的线性稳压器(LDO)。在保证LDO环路稳定性的同时,将增强型AB跟随器的偏置电流改为动态偏置电流,同时加入瞬态增强电路来改善系统重载到轻载来回跳变时的瞬态性能。仿真结果表明,该稳压器输入电压2.7~5 V,输出电压2.5 V,压差200 m V,电路空载时静态电流18μA,最大负载电流100 m A;在输出电容为100 pF时,负载电流以99×10~(–3)A/μs跳变,输出电压下冲和过冲分别为89 m V和110 m V,均在1.5μs内恢复稳定。  相似文献   

5.
一种低功耗、高稳定性的无片外电容线性稳压器   总被引:2,自引:0,他引:2  
本文研究并设计了输出电压3.3V,最大输出电流为150mA的CMOS无片外电容的低压差线性稳压器(Off-chipcapacitor-free Low-dropout Voltage Regulator,LDO).该LDO采用了NMC(Nested Miller Compensation)频率补偿技术保证了系统的稳定性.另外,采用大电容环路和SRE(Slew Rate Enhancement)电路抑制输出电压的跳变,改善了瞬态响应.电路采用了低功耗设计技术.采用CSMC 0.5μm CMOS混合信号工艺模型仿真表明:整个LDO的静态电流仅为3.8μA;最差情况下的相位裕度约为88.50;在5V工作电压下,当负载电流在1μs内从150mA下降到1mA时,输出电压变化仅为140mV;在负载电流150mA的情况下,当电源电压在5μs内从3.5V跳变至5V时,输出电压变化也仅为140mV.  相似文献   

6.
设计了一种基于自适应偏置放大器的具有快速瞬态响应的无输出电容LDO.自适应偏置放大器在发生负载瞬态响应时能够调节自身偏置电流以提供较大的输出电流来增加摆率;瞬态响应提升电路通过减小负载电容充放电电流而减小了输出电压的建立时间;通过并联反馈补偿来提高环路的稳定性.仿真结果表明,所设计的无输出电容LDO最大输出电流200mA,最小跌落电压200mV,静态电流仅16μA,全负载正负阶跃变化响应时间分别为2.5μs和3.5μs.  相似文献   

7.
毛帅  张杰  明鑫  张波 《微电子学》2022,52(6):974-980
设计了一种片外大电容快速瞬态响应低压差线性稳压器。该LDO电路基于跨导线性结构设计,在输出级引入推挽结构,有效地减小过冲的幅值和恢复时间,提高了LDO的瞬态响应速度;利用浮动缓冲器驱动功率管,有效地提高了LDO的电流效率;采用动态零点补偿技术,保证了LDO在全负载范围内的环路稳定性。该LDO电路基于0.35μm BCD工艺设计与仿真验证。结果表明,在1.2 V~3 V输入电压范围,LDO的输出电压为1 V,静态电流约为50μA,可提供0~300 mA的负载。在上升下降沿为500 ns、幅度为300 mA、轻载持续时间为50μs的负载瞬态跳变下,过冲和下冲均小于20 mV。电路满足高频负载跳变的应用需求。  相似文献   

8.
基于0.35μm CMOS工艺设计了一款无片外电容低压差线性稳压器(cap-free LDO),通过误差放大器组成的环路控制稳态误差,通过摆率增强电路构成的环路改善瞬态响应。该LDO输出电压为1.72V,压差80mV,最大输出电流50mA。测试结果显示:负载电流(IL)在0.5μs内瞬变50mA时,俯冲电压和过冲电压均为80mV左右,重回稳态的时间均小于1.5μs。  相似文献   

9.
陈文凯  李斌  吴朝晖 《微电子学》2017,47(4):505-509
提出了一种用于片内数字驱动的瞬态增强NMOS低压差线性稳压器(LDO)。该LDO采用电容耦合动态偏置和双环路推挽式驱动调整管,极大地提高了电路的瞬态响应速度。基于0.35 μm BCD工艺的仿真结果表明,负载电流在0.1~100 mA之间的跃迁时间为100 ns时,电路的下冲电压为42 mV,过冲电压为66 mV,稳定时间仅为323 ns。该LDO电路的总体静态电流约为50 μA,输出电流最大值为100 mA。  相似文献   

10.
针对便携式设备快速瞬态响应、低噪声、高电源抑制比等应用需求,提出了一种无片外电容NMOS型低压差线性稳压器(LDO)。该LDO基于浮栅结构,通过具有推挽输出级的放大器辅助控制,减小了电荷泵的噪声耦合;另外,通过取样输出电流控制误差放大器的输出动态范围,极大地提高了电路的瞬态响应能力。电路基于HHGrace 0.35μm BCD工艺设计,仿真结果表明,无外接电容时,负载电流在1μA~400 mA之间跳变,电路的下冲电压为203 mV,过冲电压为101 mV,响应时间小于1.5μs;在10 Hz~100 kHz的频段内,系统输出积分噪声电压为14μV·Hz-1/2。LDO达到了快速瞬态响应和低噪声的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号