首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Wear》2007,262(1-2):64-69
The tribological influences of PVD-applied TiAlN coatings on the wear of cemented carbide inserts and the microstructure wear behaviors of the coated tools under dry and wet machining are investigated. The turning test was conducted with variable high cutting speeds ranging from 210 to 410 m/min. The analyses based on the experimental results lead to strong evidences that conventional coolant has a retarded effect on TiAlN coatings under high-speed machining. Micro-wear mechanisms identified in the tests through SEM micrographs include edge chipping, micro-abrasion, micro-fatigue, micro-thermal, and micro-attrition. These micro-structural variations of coatings provide structure-physical alterations as the measures for wear alert of TiAlN coated tool inserts under high speed machining of steels.  相似文献   

2.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

3.
Hard turning with multilayer coated carbide tool has several benefits over grinding process such as, reduction of processing costs, increased productivities and improved material properties. The objective was to establish a correlation between cutting parameters such as cutting speed, feed rate and depth of cut with machining force, power, specific cutting force, tool wear and surface roughness on work piece. In the present study, performance of multilayer hard coatings (TiC/TiCN/Al2O3) on cemented carbide substrate using chemical vapor deposition (CVD) for machining of hardened AISI 4340 steel was evaluated. An attempt has been made to analyze the effects of process parameters on machinability aspects using Taguchi technique. Response surface plots are generated for the study of interaction effects of cutting conditions on machinability factors. The correlations were established by multiple linear regression models. The linear regression models were validated using confirmation tests. The analysis of the result revealed that, the optimal combination of low feed rate and low depth of cut with high cutting speed is beneficial for reducing machining force. Higher values of feed rates are necessary to minimize the specific cutting force. The machining power and cutting tool wear increases almost linearly with increase in cutting speed and feed rate. The combination of low feed rate and high cutting speed is necessary for minimizing the surface roughness. Abrasion was the principle wear mechanism observed at all the cutting conditions.  相似文献   

4.
In the present work, the performance of cubic boron nitride (CBN) inserts was compared with coated carbide and cryogenically treated coated/uncoated carbide inserts in terms of flank wear, surface roughness, white layer formation, and microhardness variation under dry cutting conditions for finish turning of hardened AISI H11 steel (48–49 HRC). The flank wear of CBN tools was observed to be lower than that of other inserts, but the accumulated machining time for all the four edges of carbide inserts were nearer to or better than the PCBN inserts. Results showed that tool life of carbide inserts decreased at higher cutting speeds. The surface roughness achieved under all cutting conditions for coated-carbide-treated/untreated inserts was comparable with that achieved with CBN inserts and was below 1.6 μm. The white layer formation and microhardness variation is less while turning with cryogenically treated carbide inserts than the CBN and untreated carbide. At low to medium cutting speed and feed, the performance of carbide inserts was comparable with CBN both in terms of tool life and surface integrity.  相似文献   

5.
Said Jahanmir 《Wear》1981,74(1):51-65
Wear tests were conducted using AISI 4340 steel sliding on AISI 01 tool steel under boundary lubrication conditions. The AISI 4340 steel was heat treated to obtain different microstructures and hardness levels. The results indicated that the wear behavior depends on the heat treatment procedure. It was found that hardness alone cannot be used as a measure of wear and that the microstructure and other mechanical properties should also be used. Chemical reaction products containing phosphorus, sulfur and zinc were found on the wear surfaces lubricated with a fully formulated light oil containing zinc dithiophosphates. The chemically reacted film was nonuniform and consisted of patches 1–1500 μm in size. The larger patches were formed on the surface of steel with a pearlite-ferrite microstructure and resulted in a high wear rate. In contrast, the small patches and the thin blue and brown films were formed on the wear surface of tempered martensite steel and produced low wear rates.  相似文献   

6.
阐述了高硬度钢超高速铣削的特点和应用,并讨论了其刀具系统、切削工艺参数和铣削方式等主要相关技术。  相似文献   

7.
In the present study, high-speed face milling of AISI H13 hardened steel was conducted to investigate the cutting performance of coated carbide tools. The characteristics of chip morphology, tool life, tool wear mechanisms, and surface roughness were analyzed and compared for different cutting conditions. It was found that as the cutting speed increased, the chip morphology evolved in different ways under different milling conditions (up, down, and symmetric milling). Individual saw-tooth segments and sphere-like chip formed at the cutting speed of 2,500 m/min. Owing to the relatively low mechanical load, longest tool life can be obtained in up milling when the cutting speed was no more than 1,000 m/min. As the cutting speed increased over 1,500 m/min, highest tool life existed in symmetric milling. When the cutting speed was 500 m/min, owing to the higher mechanical load, the flaked region on the tool rake face in symmetric milling was much larger than that in up and down milling. There was no obvious wear on the tool rake face at the cutting speed of 2,500 m/min due to the short tool-chip contact length. In symmetric milling, the delamination of tool material, which did not occur in up and down milling, was caused by the relatively large cutting force. Abrasion had great effect on the tool flank wear in symmetric milling. With the increment of cutting speed, surface roughness decreased first and then increased rapidly. Lowest surface roughness can be obtained at the cutting speed of about 1,500 m/min.  相似文献   

8.
9.
10.
This work investigated the influence of cutting speed and feed rate on cutting forces, surface roughness, and slot width circular sawing of AISI 1045 steel. The effects of tool material (cermet and tungsten carbide) and geometry (chip breaker flute and pre-cutting/post-cutting teeth) were also investigated. Thrust and radial forces generally tended to decrease as the cutting speed increased and tended to increase with the feed rate. The lowest values of thrust and radial forces were obtained using a tungsten carbide saw ground with precutting and post-cutting teeth. With regard to the quality of the machined wall, the lowest surface roughness was obtained by applying the highest cutting speed and lowest feed rate and employing a cermet brazed saw. Under this condition, roughness values comparable to face turning and parting off operations were obtained. The cermet brazed saw was responsible for producing the narrowest slot widths.  相似文献   

11.
R. Komanduri  M.C. Shaw 《Wear》1976,36(3):363-371
Attritious wear of silicon carbide rubbing against a cobalt base superalloy at high speed was studied using a scanning electron microscope (SEM) and an Auger electron spectroscope (AES). The SEM study of the wear area on the silicon carbide grain showed it to be very smooth. The AES study of the groove-like marking generated by a silicon carbide grain showed a heavy concentration of carbon in areas where submicron wear debris was present. No indication of chemical reaction of the abrasive with the work material was evident. Instead, it appears that the surface atoms on the abrasive are removed preferentially, layer by layer, by oxidation under high temperature and a favorably directed shear stress.  相似文献   

12.
Elliptical vibration cutting of hardened die steel with coated carbide tools is examined in this research in order to achieve low-cost high-precision machining. Diamond coated tools are applied because of superior hardness of their polycrystalline diamond coating and its low manufacturing cost. TiN coated tools are also tested, since they are widely used for conventional machining of steels. Machinability of hardened die steel by the elliptical vibration cutting with coated carbide tools is discussed in three aspects in this study, i.e. transferability of cutting edge profile to cut surface, cutting force, and tool life. The transferability is evaluated quantitatively by calculating correlation coefficients of measured roughness profiles. It is clarified that the diamond coated tools have high transferability which leads to diffraction of light on the surface machined at micro-scale pick feed. Total cutting forces including ploughing components are measured at various feed rates, and then shearing components and ploughing components are separated utilizing linear regression. The measured results indicate, for example, that the all forces become considerably smaller only when elliptical vibration is applied to the TiN coated tool without cutting fluid. It is also found that this considerable reduction of forces interestingly corresponds to higher friction coefficient, which is identified from the ploughing components. Tool life tests are carried out by various machining methods, i.e. elliptical vibration/ordinary wet/dry cutting with diamond/TiN coated tools. The result shows, for example, that the flank wear is smallest in the wet elliptical vibration cutting with the diamond coated tool.  相似文献   

13.
White layer formed on machined surface during dry and hard high speed machining has great influence on workpiece performance. Studying machined surface white layer is significant to improve the machinability and surface quality of workpiece. Experiments of dry and hard high speed machining of GCr15 bearing steel and 40CrNiMoA alloy steel were carried out with PCBN inserts, the phase composition and the thickness of white layer were studied experimentally; the formation mechanism of the white layer were studied; effects of cutting parameters, carbon content of substrate material on white layer thickness were analyzed; effects of cutting speed on retained austenite content in machined surface were also summarized. Results show that the microstructure of white layer consists of cryptocrystalline martensite, retained austenite and carbide; the white layer is formed by martensitic transformation; the white layer thickness and the retained austenite content of machined surface increase firstly and then decrease with cutting speed; the white layer thickness increases with flank wear and carbon content.  相似文献   

14.

During boring process, tool vibration is a major concern due to its overhanging length, which results in high cutting force, poor surface finish, and increase in tool wear. To suppress tool vibration and improve cutting performance, a novel technique in rheological fluid was designed and developed. In this work, a magnetorheological elastomer (MRE) was developed, and parameters, such as piston location, current intensity, and coil winding direction, were considered. Cutting experiments were conducted to obtain a set of parameters that can efficiently control vibration during boring of hardened AISI 4340 steel. Taguchi method was used to optimize the cutting condition, and findings show that the cutting tool embedded with the MRE reduced tool vibration and effectively increased cutting performance.

  相似文献   

15.
The present work deals with a comparative study on flank wear, surface roughness, tool life, volume of chip removal and economical feasibility in turning high carbon high chromium AISI D2 steel with multilayer MTCVD coated [TiN/TiCN/Al2O3/TiN] and uncoated carbide inserts under dry cutting environment. Higher micro hardness of TiN coated carbide samples (1880 HV) compared to uncoated carbide (1430 HV) is observed and depicts better resistance against abrasion. The low erosion rate was observed in TiN coated insert compared to uncoated carbide. The tool life of TiN coated insert is found to be approximately 30 times higher than the uncoated carbide insert under similar cutting conditions and produced lower surface roughness compared to uncoated carbide insert. The dominant wear mechanism was found to be abrasion and progression of wear was steady using multilayer TiN coated carbide insert. The developed regression model shows high determination coefficient i.e. R2 = 0.977 for flank wear and 0.94 for surface roughness and accurately explains the relationship between the responses and the independent variable. The machining cost per part for uncoated carbide insert is found to be 10.5 times higher than the multilayer TiN coated carbide inserts. This indicates 90.5% cost savings using multilayer TiN coated inserts by the adoption of a cutting speed of 200 m/min coupled with a tool feed rate of 0.21 mm/rev and depth of cut of 0.4 mm. Thus, TiN coated carbide tools are capable of reducing machining costs and performs better than uncoated carbide inserts in machining D2 steel.  相似文献   

16.
淬硬钢高速切削加工技术研究   总被引:4,自引:0,他引:4  
淬硬钢高速铣削加工具有传统加工无可比拟的优势,是淬硬钢加工的发展方向.从切削刀柄和刀具、加工工艺、数控编程等方面阐述了淬硬模具钢高速加工的技术特点.  相似文献   

17.
This paper presents a comparison of the performance of different cutting tool coatings for Laser Assisted Micro-Milling (LAMM). A thermal model is used to predict the temperature rise in the material removal surface which helps in analyzing the severity of the thermal conditions experienced by the cutting tool in LAMM. Machining experiments are then carried out to evaluate the wear behavior of different commercially available (TiCN, TiAlN) and customized coated tools (TiSiN, Al2O3, Al2O3+ZrN). These coatings were selected since they have the capability to withstand the temperatures experienced in LAMM. The results of micro-milling experiments indicate that commercially available coatings like TiCN perform poorly due to their inferior adhesion characteristics with the base material. Delamination is found to be the principal wear mechanism of TiCN, TiSiN, and Alumina (Al2O3) coated tools for the conditions investigated in this study. In addition, the results indicate that the wear performance of TiAlN and Al2O3+ZrN coated tools is superior.  相似文献   

18.
19.
Abstract

Machining studies were conducted on a carbon steel workpiece using both untreated and deep cryogenic treated P-20 tungsten carbide cutting tool inserts. The flank wear of deep cryogenic treated carbide tools is lower than that of untreated carbide tools on machining of C45 steel. The cutting force during machining of C45 steel is lower with the deep cryogenic treated carbide tools when compared with the untreated carbide tools. The surface finish produced on machining the C45 steel workpiece is better with the deep cryogenic treated carbide tools when compared with the untreated carbide tools.  相似文献   

20.
高速切削AISI4340钢的切削力有限元分析   总被引:3,自引:1,他引:2  
在高速硬切削时,切屑主要为断屑,了解断屑引起的高频交变的切削力的特征,有助于优化切削参数.通过有限元方法对AISI4340钢高速直角切削进行仿真.研究切削速度、背吃刀量和刀具前角等切削参数对断屑的形成频率、平均单位切削力以及切削力的频率的影响.分析结果为优化切削参数、减少高速切削中的振动和提高表面加工质量等提供指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号