首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水源热泵技术利用少量电能将地表水或地下水的低品位能量转移至高品位,目前正成为节能领域的研究热点.针对水源热泵变冷凝参数的相关研究缺乏的现状,通过搭建水源热泵热水器实验台进行了相应实验研究.在水流量Q为0.7~1.3 m~3·h~(-1),进水温度t为15~30℃范围内,对系统功耗、制热量、制冷量、热泵性能系数COP等参数进行了测量.实验结果表明,在水流量为1.1 m~3·h~(-1),进水温度为20℃时,COP达到最大值,系统平均热泵性能系数COP_(ave)为3.23,此时系统处于最佳运行工况.由此可知,寻找系统的最佳运行工况对热泵系统设计和实际工程应用具有重要的意义.  相似文献   

2.
通过对60kW水源CO_2热泵的实验测试,在获得的911组实验数据的基础上,建立了用于反映热泵系统性能和循环参数随运行工况变化趋势的BP神经网络拟合模型,综合分析了系统在供水温度为55~100℃、回水温度为10~50℃、热源温度为5~50℃和电子膨胀阀开度为50~400步的全工况范围内的性能,从而为该类型热泵系统性能的预测和系统设计提供了数据参考。在对四种工况下,即15/55/15℃、15/90/15℃、15/90/30℃和30/90/30℃时系统运行参数的比较分析的基础上,定性评价了系统在全工况范围内的匹配性。  相似文献   

3.
针对吸收式太阳能海水淡化系统设计了降膜吸收、再生实验装置,分别以溴化锂、氯化钙两种溶液为工质对装置进行了实验研究。通过改变影响工质吸收与再生性能的条件(如溶液浓度和温度等),给出了不同工况下系统的运行情况。实验结果表明,当运行压力低于20kPa、热源温度高于75℃时溶液已有较好的再生速率,而当海水蒸发温度高于45℃时,溶液也已有较好的吸收速率,完全满足太阳能集热系统供热要求。还给出了系统最佳运行参数范围。  相似文献   

4.
为解决农村采暖问题,设计了一种太阳能/直蒸式水源热泵耦合供暖系统;该系统日间利用太阳能供暖,同时将热量储存在蓄热水箱中;夜间采用水-冰相变释放的潜热供暖。实验结果显示:该系统在直蒸式水源热泵进口温度为15℃时的制热能效比COP为4.5;在直蒸式水源热泵出口温度为0℃时的制热能效比COP为2.9;系统性能稳定,水源热泵进口温度在-5~15℃的运行良好。经济性分析结果显示;该系统的运行费用较低。以期为河北省南部地区乡镇住宅采暖提供技术可靠、供暖稳定、初装成本较低的新型供暖系统。  相似文献   

5.
针对常规建筑空调冷热源形式的不足之处,采用多模式再生系统改善常规热源塔热泵系统,详述其工作原理、工作模式和系统设计方法。在实际节能改造项目中应用该系统并给出控制策略与评价计算方法,对制冷、制热和吸湿的典型工况进行现场实际测试,结果表明:在该系统设计参数下,夏季平均空气温度28.6℃、平均相对湿度84.5%工况综合制冷效率为4.51,冬季平均空气温度7.68℃、平均相对湿度81.2%工况考虑再生能耗在内综合制热效率为3.46。系统运行过程中溶液吸湿量与环境温度和相对湿度有关,环境温度越高,相对湿度越低,吸湿量越小。热源塔吸热由显热和潜热两部分组成,潜热占比受运行过程吸湿量影响,与空气相对湿度直接强相关,相对湿度越低,空气与水接触面水蒸气分压力差越小,水分更难从空气迁移到溶液中。测试时间内平均相对湿度81.2%的工况下由溶液吸湿导致的潜热占总系统热量比例约为18.6%。再生机组再生效率高低受外界环境与工况变化的影响较小,5天内平均值为4.45 kg/kWh。  相似文献   

6.
采用吸收式热泵利用汽轮机乏汽余热供暖已逐渐成为火电厂的主要节能措施之一,但由于机组负荷变化频繁,使热泵经常偏离设计工况,运行效率低,供热性能差。为对热泵实施优化调节和控制,提高热泵运行效率,实验研究了热泵动态特性,结果显示,在驱动热源流量、低温水流量和低温水入口温度阶跃降低10%的情况下,在400s内,热泵制热量分别减少了18kW、2.1kW和14kW,冷却水出口温度分别降低了4℃、0.35℃和2.5℃,并通过仿真获得了动态响应过程的传递函数,为热泵优化控制提供了技术支持。  相似文献   

7.
以输配能耗最小为目标,室内舒适和建筑节能相关要求为约束条件,利用MATLAB的优化工具箱,对地表水水源热泵输配系统的优化模型进行研究,确定影响地表水水源热泵输配系统能耗的主要因素。应用此方法对水源热泵实验系统进行了应用分析,得到了系统随负荷率变化的冷却水和冷冻水变流量优化运行方案。对于大部分时间处于部分负荷运行的系统,优化运行比定流量运行可减少能耗10%以上。该优化模型能方便地应用于实际工程,为输配系统的设计和运行提供最佳参数,实现随负荷变化的流量调控,从而有效降低水源水输配能耗,提高系统能效。  相似文献   

8.
季杰  赵方亮  黄文竹 《太阳能学报》2016,37(10):2578-2584
直膨式太阳能热泵(direct expansion solar assisted heat pump,DX-SAHP)可直接吸收利用太阳能,进而提高热泵的蒸发温度和性能系数(COP),有利于改善热泵的热性能和结霜。本文在带有太阳模拟发射器的焓差实验室中建立直膨式太阳能热泵和常规直彭热泵的对比实验,对不同条件下的热泵系统参数进行测量并进行性能对比和分析。实验结果显示,直膨式太阳能热泵能够吸收太阳能,在辐照度分别为100和200 W/m~2的工况下,系统制热功率比无辐照时的制热功率分别提高9.8%和21.8%,COP分别提高11.7%和23.7%,且除霜启动延迟23 min;辐照度为200 W/m~2时,直膨式太阳能热泵在环境温度5℃下的制热功率比1℃下的制热功率提高16.92%;在室外温度为1℃,相对湿度为95%的工况下,提高太阳辐照度,可有效减小涂层蒸发器进出口温度的波动,提高蒸发器运行的稳定性。此外,直膨式太阳能热泵在运行过程中吸收的太阳辐射被用来蒸发液态制冷剂工质,导致压缩机进气量增加,系统的制热功率和COP提高。  相似文献   

9.
提出一种太阳能吸收子系统过冷压缩循环的新型压缩吸收耦合热泵系统,由压缩子系统、吸收子系统和太阳能集热子系统3部分组成;在夏冬两季均可使用。针对该新型太阳能热泵在恒定工况下的制冷、制热性能进行稳态实验研究。实验结果显示,夏季制冷时,在冷冻水进口温度12℃,冷凝器出口制冷剂温度50℃时,新型太阳能热泵系统的制冷最低COP为4.02,与同工况的常规压缩热泵相比,制冷COP提高13.88%;冬季制热时,存在COP的极值转变温度。在实验环境温度为16℃,冷凝器热水出口温度59℃时,新型耦合系统最小的制热COP为5.44,与同工况常规压缩热泵相比,制热COP提高11.52%。显示了新型系统的巨大优势,具有良好的应用前景。  相似文献   

10.
《可再生能源》2013,(7):93-96
设计了一种热回收型地下水源热泵系统试验装置。在设定工况下(冷却水进、出口温度分别为18,29℃,冷冻水进、出口温度分别为12,7℃,生活热水流量为750 L/h),测定了常规地下水源热泵系统和热回收型地下水源热泵系统的制冷量、压缩机功率、COP以及EER,并对其变化规律进行了分析。研究结果表明,与常规地下水源热泵系统相比,热回收型地下水源热泵系统性能有了明显改善,节能效果显著。  相似文献   

11.
针对严寒地区所构建的太阳能-空气源热泵系统供暖实验装置,进行热泵独立运行及蓄热水箱-热泵双热源联合运行的供暖特性研究。结果表明:使用空气源热泵单独供暖时,当室外温度低于-12℃时系统COPs达到最低,无法满足室内采暖需求;当室外温度在-12~-7℃之间时,室内采暖需求虽可得到满足,但系统COPs仅为1.10~1.44,节能效果不明显;当室外温度大于-7℃时,室内平均温度可达到20℃以上,系统节能性较好;蓄热水箱的加入会影响运行初期机组的稳定性,但可使室温得到快速提升并提高系统的制热性能,在相同运行条件下,蓄热水箱-热泵混合供暖期间室内平均温度为24.61℃,系统COPs为2.01,较蓄热水箱与空气源热泵交替供暖及单一空气源热泵供暖模式分别提高6.90%、21.08%,供暖效果最佳。  相似文献   

12.
为进一步提高跨临界CO2水源热泵系统的效率,对原有试验台进行改造,建立新的CO2水源热泵系统。新的水源热泵实验台采用新型套管式蒸发器和气体冷却器。在实验中考虑气体冷却器进水温度分别为15、20、25℃3种工况,对CO2水源热泵提供温度为45~70℃热水时系统的性能进行分析。结果发现,采用新型换热器可使热泵系统效率提高。气体冷却器进水温度越低,热泵系统的制热效率越高。降低冷却器出口工质的温度有助于提高系统的制热效率。相同的进出水温度下存在较优的蒸发温度。制取的热水温度越高,热水的质量流量越低。  相似文献   

13.
贾文姣  李素芬 《节能》2002,(4):9-12
对于目前广泛采用的热电厂集中供热系统 ,本文针对不同热用户的不同要求 ,并根据热网的预测模型 ,为锅炉和汽机的运行提供正确的设定参数 ;提出从经济技术角度确定管网最佳供回、水温度的原则 ;同时分别从热源、最不利热用户的角度分析了供热管网系统的初调节和运行调节问题  相似文献   

14.
热泵系统也称余热回收系统,是使用部分驱动能源(如燃气、蒸汽、燃气或热水),将余热形式为地热水、冷却水、洗涤水或伴油污水,温度在20~70℃的低品位能量取出,转移到45~100℃的中高温热媒中的系统。热泵系统在利用低品位热能的同时,仅消耗少量电能,节能效果显著。我国直到20世纪90年代,开始大面积应用热泵技术。目前,在热泵制造、安装和运行规模上,已走到了国际前例。现在,不管是压缩式热泵,还是吸收式热泵,也不论是设备还是系统,其技术已经成熟,热泵机组制热温度达到45~100℃,COP值(能量与热量之间的转换比率,简称能效比)也达到相当高的水平,机组的超小型化和超大型化技术得到长足发展,被广泛应用到建筑、烘干、石油化工、医药、筑路等领域。以热泵工艺在油田注水站的应用为分析对象,针对热泵的起源、发展、工作原理及在注水站的应用展开论述,着重从初期投资、运行费用、人工费用、社会效益、节约清水及10年费用现值方面,对注水站采用热泵冷却工艺与常规冷却工艺进行对比分析,提出了注水站采用热泵工艺有利于提高注水站系统的热能效率,降低运行成本,减少加热炉加热过程中产生的废气和余热排放,实现节能减排,对于热泵工艺在大庆油田注水站的应用具有借鉴意义。  相似文献   

15.
介绍了太阳能与热泵联合干燥系统的组成与工作原理.通过理论分析与实验研究探讨了太阳能与热泵联合运行的优化匹配,当太阳能供热量能满足木材干燥所需热量时,由太阳能系统供热;否则由太阳能与热采联合供热;阴雨天和夜间由热泵供热.当太阳能送风温度低,但高于环境温度时,低温太阳能向热泵送风,可以提高热泵的供热系数和供热量.对应于一定的环境温度,太阳能向热泵送风有一个相匹配的最低温差.例如当环境温度为24℃时,通过理论和实验求得太阳能向热泵送风与环境温度间的最低送风温差分别为4℃和6℃.  相似文献   

16.
为了验证喷液冷却空气源热泵低温适应高出水温度制热的可靠性,探究热泵高出水温度制热的运行特性,以R410A为制冷剂,在2℃、-10℃、-20℃的环境温度下开展喷液冷却空气源热泵样机45℃、50℃、55℃、60℃变出水温度的试验测试。结果表明:压缩机排气温度和热泵功耗随出水温度的升高而升高,制热量和COP值随出水温度的升高而降低,环境温度降低热泵制热性能下降;环境温度为-20℃、出水温度为55℃工况(循环温差大于75℃)的压缩机排气温度为115.2℃,低于R410A的排温上限125℃,COP值为1.275,喷液冷却空气源热泵具有低温适应高出水制热的安全可靠性。  相似文献   

17.
为研究间接膨胀式太阳能高温热泵系统实际应用的可行性和有效性,搭建实验平台,在天津地区气象条件下对高温热泵全天动态运行特性开展实验研究,分析太阳辐射强度、水箱储热性能、冷凝温度及膨胀阀开度对系统运行性能影响。结果表明:平均太阳辐射强度由396 W/m2增加到563 W/m2,高温热泵性能系数COP由3.62增至3.93;因水箱储热功能,间接膨胀式系统在太阳辐射强度剧烈波动时能够保持高温热泵相对稳定的蒸发温度;当蒸发温度固定时高温热泵COP随冷凝温度升高而降低,冷凝温度由70 ℃增至80 ℃,COP由4.32降至2.76;膨胀阀开度由150步增至250步,高温热泵全天平均COP由3.14升至5.12,排气压力降低46%。  相似文献   

18.
本研究设计并搭建了一种可以实现工业废液浓缩处理的热泵驱动低温蒸发废液处理装置。理论分析并实验验证了喷淋温度、循环空气流量、喷淋流量和废液浓度对装置处理量的影响,结果表明装置处理量随着喷淋温度、循环空气流量和喷淋流量的增加而增加,随着废液浓度的增加而减小,从而确定了装置的最佳运行参数;并对比分析了装置的运行热力能效比EER,约为热泵空调工况制热时的1.7倍,最高可以达到7.4。  相似文献   

19.
一种新型热风干燥系统的节能分析   总被引:2,自引:0,他引:2  
杨宏军  樊栓狮  李静 《节能技术》2009,27(6):488-491
本文提出了一种新型热风干燥系统-热泵/转轮联合热风干燥系统(HDSHR),介绍了它的系统组成和工作原理.通过热力学分析得出,在某些工况下,HDSHR比热泵干燥系统(HPDS)和转轮热风干燥系统(HDSR)都节能.以干燥系统的单位能耗除湿量(SMER)为性能指标,制冷系统采用环保工质R134a、最高冷凝温度为80℃、采用氯化锂除湿转轮,再生温度70℃时,确定了HD-SHR最佳工况:制冷剂的蒸发温度是20℃、干燥温度范围是55~70℃.在此工况范围内进行了计算,得出HDSHR的SMER值在1.545-2.168之间,HPDS的SMER值在0.813-1.125之间.可见,在最佳干燥温度范围内HDSHR具有显著的节能效果.  相似文献   

20.
提出一种包含吸收溶液冷却结晶过程的新型第二类吸收式热泵循环,并对其工作过程及性能特性进行理论分析与实验研究。结果表明,该循环可在吸收器吸收溶液质量分数显著高于发生器吸收溶液质量分数的条件下工作,其热泵温升能力明显优于现有AHT循环。当冷却结晶终温和冷凝器温度为35℃、发生器温度和蒸发器温度为92℃时,其热泵温升理论上可达97℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号