首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain DQ alpha/beta dimeric molecules have been shown to play a major role in determining susceptibility or resistance to IDDM. Whether or not predisposition associated with DR4 haplotypes is exclusively due to linkage to DQB1*0302 and DQA1*0301 alleles is still a controversial issue. A modifying effect of certain DRB1*04 subtypes on the susceptibility encoded by DQ alleles is possible, since not all DRB1*04-DQB1*0302 haplotypes are associated with the disease. The distribution of DRB1*04 subtypes was analysed in 240 DR4-positive Caucasian IDDM patients and 110 DR4-positive healthy controls using allele-specific hybridization after genomic amplification. Although an important contribution to IDDM predisposition was encoded by the DQB1*0302 allele which was found in the majority of patients (94.2% vs 64.7% in controls, Odd's ratio OR = 8.8, P < 0.0001), differences between DRB1*04 variants persisted after the effect of the DQB1 locus was removed by matching patients and controls for DQB1*0302. Thus, the DRB1*0402 allele conferred a strong IDDM-predisposing effect (OR = 3.1, P < 0.02) which was highly significant in the absence of DR3 on the second haplotype (OR = 5.6, P < 0.0001) but was not visible among DR3/4 heterozygote individuals. Conversely, the DRB1*0404 allele conferred a strong protective effect (OR = 0.26, P < 0.0001) which was dominant even in the presence of the associated high risk DR3 haplotype (OR = 0.21, P < 0.03). These data indicate that DQ molecules are not the sole contributors to the DR4-associated IDDM predisposition, and that peculiar DR4 subtypes play a significant role in susceptibility to or protection from the disease. DRB1*0402 differs from DRB1*0404 by only two acidic residues at positions 70 and 71 within the peptide binding groove, instead of amide and basic amino acids. This might induce changes of peptide binding specificity that correlate with the genetic linkage of IDDM predisposition.  相似文献   

2.
Genes of the major histocompatibility complex (MHC) have been associated with susceptibility to drug-induced adverse reactions. We previously found that clozapine-induced agranulocytosis (CA) is associated with the HLA-DRB1*0402, DRB4*0101, DQB1*0302, DQA1*0301 haplotype in Ashkenazi Jewish patients and with the HLA-DRB1*1601, DRB5*02, DQB1*0502, DQA1*0102 haplotype in non-Jewish patients. In the present study, we tested the hypothesis that the variants of the heat-shock protein 70 (HSP-70) encoded by the HSP-70 loci located within the MHC region and known to be involved in apoptosis and regulation of cell proliferation could play an important role in molecular mechanisms of CA. First, we analyzed HSP70-2 polymorphism in risk-associated haplotypes from HLA homozygous cells and normal individuals and confirmed that the HSP70-2 9-kb variant was associated invariably with DR4 (HLA-DRB1*0402, DQB1*0302) and DR2 (HLA-DRB1*01601, DQB1*0502, DQA1*0102 and HLA-DRB1*1501, DQB1*0602) haplotypes, which were the haplotypes found increased in Jewish and non-Jewish patients with CA, respectively. The 9.0-kb variant was also found to be associated with HLA-B44, DRB1*0401 and HLA-B44, DRB1*07 haplotypes. Second, in patients with CA (12 Ashkenazi Jewish and 20 non-Jewish patients), HSP70-1 A and HSP70-2 9.0-kb variants were associated with the MHC haplotypes found by us to be markers of susceptibility to CA. The clozapine-treated control group had an excess number of HSP70-1 C and HSP70-2 8.5-kb variants, consistent with genetic resistance to CA associated with those variants. This finding supports our hypothesis that a dominant gene within the MHC region (marked by HSP70-1 and HSP70-2), but not necessarily HLA, is associated with CA in two different ethnic groups.  相似文献   

3.
HLA-DQ genes are the main inherited factors predisposing to IDDM. This gene region harbors long terminal repeat (DQ LTR) elements of the human endogenous retrovirus HER V-K, which we analyzed for a possible association with disease. We first investigated whether LTR segregate with DQ alleles in families. Members (n = 110) of 29 families with at least one diabetic child, unrelated patients with IDDM (n = 159), and healthy controls (n = 173) were analyzed. Genomic DNA was amplified for DQ LTR3 by a nested primer approach as well as for DQA1 and DQB1 second exons, to assign DQA1 and DQB1 alleles. DQ LTR segregated in 24 families along with DQ alleles. Of the 29 families, 20 index patients were positive for DQ LTR. The DQ LTR was in all patients on the haplotype carrying the DQA1 *0301 and DQB1 *0302 alleles. A majority of patients had DQ LTR (62%) compared with controls (38%) (p < 1.3 x 10(-5)), even after matching for the high-risk alleles DQA1 *0501, DQB1 *0201-DQA1 *0301, and DQB1 *0302 (79% of patients and 48% of controls; p < 0.02). Subtyping for DRB1 *04 alleles in all DQB1 *0302+ individuals showed 56% DRB1 *0401, DQB1 *0302 [LTR' patients vs. 29% controls with the same haplotype (p < 0.002)]. In conclusion, these data demonstrate the segregation of DQ LTR with DQA1, DQB1 alleles on HLA haplotypes. Furthermore their presence on DRB1 *0401-, DQA1 *0301-, and DQB1 *0302-positive haplotypes suggest that they contribute to DQ-related susceptibility for IDDM.  相似文献   

4.
Previous studies have indicated that certain alleles of HLA-DR and -DQ genes were strongly associated with susceptibility and resistance to insulin-dependent diabetes mellitus (IDDM), and the role of DQ molecule in IDDM has been suggested. To further clarify the association of DQ alleles with IDDM, we determined the nucleotide sequences of full-length cDNA from 13 DQA1 alleles and 14 DQB1 alleles. The sequencing analysis revealed sequence polymorphisms outside the hypervariable region of DQ genes. We then analyzed the DQA1 and DQB1 polymorphisms along with that of DRB genes in 86 B-lymphoblastoid cell lines (B-LCLs) from various ethnic groups and in healthy unrelated Japanese and Norwegian individuals. The allelic and haplotypic distributions in each population revealed the characteristic haplotypic formation in the HLA class II region. HLA genes in 139 Japanese and 100 Norwegian IDDM patients were analyzed. DQB1*0301 was negatively associated with IDDM in both ethnic groups, irrespective of associated DRB1 and DQA1 alleles. In DQB1*0302 positive populations, which represented a positive association with IDDM in both ethnic groups, DRB1*0401, *0404, *0802 haplotypes increased in the patients, whereas DRB1*0406 haplotype decreased. Considering about the hierarchy in DRB1 alleles with IDDM susceptibility (DRB1*0401>*0404>*0403 in Norwegian and DRB1*0802>*0403>*0406 in Japanese), the genetic predisposition to IDDM is suggested to be defined by the combination of DR-associated susceptibility and DQ-associated susceptibility and by the DQ-associated resistance which is a dominant genetic trait.  相似文献   

5.
HLA-DRB1, -DQB1 and -DPB1 allele frequencies were investigated in a sample of the Slovak population by PCR-SSP and PCR-RFLP methods. The most frequent DRB1 alleles were DRB1*1101-5 (0.2038), DRB1*0701-2 (0.1423), and DRB1*1501-2 (0.1231). The most rare alleles found were DRB1*0901 (0.0038), and DRB1*1201 (0.015). The most common DQB1 alleles were DQB1*0301 (0.2448), DQB1*0201 (0.2098), and DQB1*0501 (0.1119), respectively. The alleles with the least occurrence rate were DQB1*0601 (0.0035) and DQB1*0401 (0.007). The most common DPB1 alleles found were DPB1*0401 (0.4329), DPB1*0402 (0.2089), and DPB1*0201 (0.1438), respectively. The least frequent alleles were DPB1*0601, *1101, and *1501 (0.0034). Allele frequencies found in our study were compared to those in Czech, Austrian, and German populations. No statistically significant differences were observed.  相似文献   

6.
The mechanism underlying the impaired immune response to hepatitis B vaccines in up to 10% of healthy subjects is not known. An increased incidence of poor responsiveness in subjects with HLA-DR3+ or -DR7+ haplotypes has been documented, suggesting that HLA-DR-linked genes may regulate the human response to hepatitis B surface antigen. However, not all HLA-DR3+ and/or -DR7+ individuals are poor responders, and subjects with identical HLA-DR haplotypes sometimes display totally divergent antibody responses to vaccination. HLA class II DNA typing was performed in well and poorly responding hepatitis B vaccine recipients and we analyzed the role of the single HLA-DR, -DP, and -DQ molecules and of their associated (interaction) haplotypes in the response to hepatitis B vaccination. Statistical analysis revealed that HLA-DRB1*010*, -DR5, -DPB1*040*, -DQB1*0301, and -DQB1*0501 were more abundant in good responders, whereas HLA-DRB1*07, -DPB1*1101, and -DQB1*020* were associated with poor response, with DQB1*020* showing the strongest association with poor responsiveness. We further investigated whether there were interactions between the HLA factors contributing to poor responsiveness. We show here that HLA-DPB1*02 was negatively associated with responsiveness when it occurred in association with haplotype DRB1*0701/DRB4*0101-DQB1*020*, and DRB4*0101 was negatively associated with responsiveness when it occurred in association with haplotype DRB1*0301/DRB3*0101-DQB1*020*. Our results indicate that the immune response to hepatitis B vaccine is largely determined by HLA-DR, -DP, and -DQ genes and that interaction between HLA molecules that are not in linkage disequilibrium contributes to poor responsiveness.  相似文献   

7.
The HLA-B*27 group of alleles has been extensively studied due to the association of particular B*27 alleles with ankylosing spondylitis (AS). We describe here an HLA-B*27 allele (B*2712) encoding an antigen that lacks reactivity with B27 monoclonal antibodies (moabs) and alloantisera but reacts with some B40/B60 moabs and alloantisera and expresses the Bw6 public epitope. This allele was discovered by the segregation of an HLA-B allele undetectable by PCR-SSP within a Caucasian family from the British population referred for routine bone marrow transplant HLA typing and found in the haplotype A*29; B*2712; Cw*1203; DRB1*13; DQB1*0603. Serological typing showed a lack of reactivity with four B27 moabs and four alloantisera but positive reactivity with moabs and alloantisera specific for B40/B60 and Bw6 public epitopes. Subsequent sequencing showed the closest homology was with B*2708 with three mismatches in exon 2 at positions 204, 209 and 210. The intron 2 sequence was identical with other B*27 lineage alleles including a 2 base pair deletion at positions 95 and 96. The relationship between HLA-B*2712 and reported B60 associations with susceptibility to AS remains to be determined.  相似文献   

8.
The HLA-associated susceptibility to develop celiac disease (CD) seems mainly to be conferred by a particular HLA-DQ heterodimer encoded by the DQA1*0501 and DQB1*0201 genes either in cis or in trans position. To study the possible influence of DRB1 or other DQA1 and DQB1 alleles on the CD susceptibility conferred by these DQ genes, we performed genomic HLA typing of 94 CD patients, selected those who carried at least one copy of the DRB1*0301-DQA1*0501-DQB1*0201 haplotype (N = 89) and compared them to 47 random, healthy Norwegians matched with the patients to carry at least one copy of the above haplotype. We found an excess of DQB1*0201 homozygosity in the patients. This was due to an increased frequency of the DRB1*0301-DQA1*0501-DQB1*0201 and DRB1*0701-DQA1*0201-DQB1*0201 haplotypes present on the other chromosome. We propose that, in individuals carrying the DQA1*0501 and DQB1*0201 alleles, the presence of a second copy of the DQB1*0201 allele increases susceptibility to CD.  相似文献   

9.
It has previously been demonstrated that susceptibility to pemphigus vulgaris is associated with human leukocyte antigen (HLA)-DR4 serologic specificity among Ashkenase Jews, and with DR4 as well as DR6 (DR14) in other ethnic groups. We genotyped HLA-DRB1, DQA1, DQB1, and DPB1 alleles in 16 patients with pemphigus by polymerase chain reaction-restriction fragment length polymorphism, to find evidence of potential HLA class II allele associations with pemphigus in Japanese patients who have a relatively homogeneous ethnic background. All nine patients with pemphigus vulgaris and five of seven patients with pemphigus foliaceus carried one or two alleles of HLA-DRB1*04 (*0403, *0406) and HLA-DRB1*14 (*1401, *1405, *1406) subtypes. Sequence analysis of these DRB1*04 and DRB1*14 alleles revealed the amino acid homology of phenylalanine at position 26 and valine at position 86 with the DRB1*0402 allele that reportedly confers a strong susceptibility to pemphigus vulgaris in Ashkenazi Jews. Thus our findings, together with previous HLA studies on pemphigus vulgaris patients of different ethnic groups, suggest that HLA-DRB1*04 and DRB1*14 alleles are commonly associated with pemphigus vulgaris across racial barriers. These HLA-DRB1 alleles are likely to be also associated with pemphigus foliaceus. Further studies on more diverse ethnic populations will be helpful in determining the significance of the association between certain amino acid residues of the class II molecules and disease susceptibility to pemphigus vulgaris as well as pemphigus foliaceus.  相似文献   

10.
We report here the DNA polymerase chain reaction sequence-specific oligonucleotide (PCR-SSO) typing of the HLA-DR B1, B3, B4, B5 and DQB1 loci for a sample of 103 Vietnamese Kinh from Hanoi, and compare their allele and haplotype frequencies to other East Asiatic and Oceanian populations studied during the 11th and 12th International HLA Workshops. The Kinh exhibit some very high-frequency alleles both at DRB1 (1202, which has been confirmed by DNA sequencing, and 0901) and DQB1 (0301, 03032, 0501) loci, which make them one of the most homogeneous population tested so far for HLA class II in East Asia. Three haplotypes account for almost 50% of the total haplotype frequencies in the Vietnamese. The most frequent haplotype is HLA-DRB1*1202-DRB3*0301-DQB1*0301 (28%), which is also predominant in Southern Chinese, Micronesians and Javanese. On the other hand, DRB1*1201 (frequent in the Pacific) is virtually absent in the Vietnamese. The second most frequent haplotype is DRB1*0901-DRB4*01011-DQB1*03032 (14%), which is also commonly observed in Chinese populations from different origins, but with a different accessory chain (DRB4*0301) in most ethnic groups. Genetic distances computed for a set of Asiatic and Oceanian populations tested for DRB1 and DQB1 and their significance indicate that the Vietnamese are close to the Thai, and to the Chinese from different locations. These results, which are in agreement with archaeological and linguistic evidence, contribute to a better understanding of the origin of the Vietnamese population, which has until now not been clear.  相似文献   

11.
The association of HLA-DRB1 and DQB1 genes with IDDM in Koreans was assessed using 115 IDDM patients and 140 nondiabetic controls. DQB1*0201 is the only DQB1 allele positively associated with IDDM while DQB*0602, *0601 and *0301 are negatively associated. Three DRB1 alleles (DRB1*0301, DRB1*0407 and DRB1*0901) are positively associated while four DR allele groups (DRB1*15, DRB1*12, DRB1*10 and DRB1*14) are negatively associated. However, Haplotype analyses indicated that DQB1*0302, DRB1*0405 and DRB1*0401 may confer susceptibility because the DRB1*0405-DQB*0302 and DRB1*0401-DQB1*0302 haplotypes are positively associated with the disease. The lack of association in Koreans with the DQB1*0302 allele, which appears predisposing in studies of non-Orientals, is due to its strong linkage disequilibrium (LD) with the protective DRB1*0403 and *0406 alleles, while the lack of association with DRB1*0405 is because of its strong LD with the protective DQB1*0401 allele. Nine DR/DQ genotypes confer significantly increased risk to IDDM. Seven of the nine genotypes (DR3/4s, DR1/4s, DR4s/13, DR4s/8, DR4s/7, DR9/13 and DR3/9) were also found to be at high risk to IDDM in other populations, while the two others (DR1/9 and DR9/9) are only found in Koreans. Surprisingly, DR4/4 homozygotes are not associated with high risk to IDDM in Koreans. This observation can be explained by the high frequency of protective DR4 subtypes and the protective DQ alleles (0301 and 0401) associated with the susceptible DR4 alleles. Our analyses indicate that the counterbalancing act between susceptible DRB1 and protective DQB1, and vice versa, that has already been observed in Chinese and Japanese, is the major factor responsible for the low incidence of diabetes in Koreans.  相似文献   

12.
Pemphigus vulgaris (PV) is a blistering disease of the skin and mucous membranes characterized by an autoantibody response against a keratinocyte adhesion molecule, desmoglein 3, causing acantholysis and blister formation. We compared high resolution MHC class II alleles and haplotype frequencies (HLA-DRB, DQA1 and DQB1) in 37 patients with PV to 89 haplotypes of normal relatives from New Delhi and Ahmedabad. We found that PV patients had significantly increased frequencies of DRB1*1404 (P < 0.0001), DQA1*0101 (P = 0.001), and DQB1*0503 (P < 0.0001). These associations were due to the increased frequencies of the haplotype HLA-DRB1*1404, DRB3*0202, DQA1*0101, DQB1*0503 in patients compared to control haplotypes (p < 0.0001). Also, patients from Ahmedabad had a significant increase in HLA-DQB1*0302 (p = 0.03). An identical amino acid sequence (Leu-Leu-Glu-Arg-Arg-Arg-Ala-Glu), in positions 67-74 of the beta domain of DRB alleles is restricted to some DR14 alleles. Therefore, there are three possible explanations for class II allele involvement in autoantibody in PV patients with class II haplotypes marked by HLA-DR14. First, the class II alleles could be markers for an unidentified susceptibility gene in linkage disequilibrium with them. Second, the primary association could be with DQB1*0503 and the association with HLA-DR14 alleles would be the result of linkage disequilibrium. Third, the HLA-DRB1 locus susceptibility could involve a specific amino acid sequence in the third hypervariable region shared by several HLA-DR14 alleles.  相似文献   

13.
In the study described here primers were designed for DQB1 'low-resolution', i.e. generic, typing by PCR amplification with sequence-specific primers (PCR-SSP) considering all the currently recognized DQB1 alleles, i.e. 0501-0504, 0601-0609, 0201, 0301-0305 and 0401-0402. This resolution was achieved by performing eight PCR reactions per individual. The DQB1 alleles corresponding to the serological specificities DQ4, DQ5, and DQ6 were uniquely identified, whereas the DQ2, DQ7, DQ8 and DQ9 specificities were amplified by two primer mixes. All homozygous and heterozygous combinations of the serological series DQ1 to DQ9 could be distinguished. The yield of amplified products were increased compared to our previously described DQB1 'high-resolution' typing technique by lengthening many of the primers, modifying the PCR cycling parameters and by including glycerol in the PCR reaction mixtures. Thirty-one cell lines and 90 donor spleen cells were investigated by the DQB1 'low-resolution' PCR-SSP technique as well as by TaqI DRB-DQA-DQB RFLP analysis. The concordance between PCR-SSP typing and RFLP analysis was 100%. The cell lines and 20 of the spleen cells were typed twice with complete reproducibility. No false positive or false negative typing results were obtained. DQB1 'low-resolution' PCR-SSP typing, including DNA extraction, PCR amplification, gel detection, documentation and interpretation, were performed in 2 h which renders the PCR-SSP technique suitable also for the genotyping of cadaveric organ donors.  相似文献   

14.
Ethnic comparisons are extremely important and useful for studying the HLA component involved in insulin-dependent diabetes mellitus (IDDM) predisposition. To date there have been only a few reports on the association of HLA loci and IDDM in Chinese. We report here a study on DQA1*Arg52, DQB1*nonAsp57, and DRB1*04 in IDDM children and control adults among Han Chinese living in Taiwan. One hundred and fourteen unrelated children (62 boys) with IDDM were studied. Their ages at diagnosis were between 0.3 and 15.0 years (6.8 +/- 3.6 years). The control population consisted of 120 randomly selected normal adults. DQA1*Arg52(+/+), DQB1*nonAsp57(+/+), and DRB1*04(+/-) were associated with IDDM (RR = 11.50, 2.21, and 2.82; p = 1.11 x 10(-15), 2.84 x 10(-3), and 1.98 x 10(-4), respectively). DQA1*Arg52, DQB1*nonAsp57, and DRB1*04 conferred risks for IDDM (RR = 12.79, 7.11, and 2.83; pc = 8.22 x 10(-4), 5.35 x 10(-3), and 5.68 x 10(-4), respectively). Combinations of DQA1*Arg52 and DRB1*04 conferred the highest risk for IDDM (RR = 19.64, pc = 5.4 x 10(-5)). DQA1*Arg52 was associated with IDDM in subjects with DQB1*nonAsp57+ (RR = 14.87, pc = 2.41 x 10(-4)) and DQB1*nonAsp57 was also associated with IDDM in subjects with DQA1*Arg52+ (RR = 8.41, pc = 1.54 x 10(-3)), suggesting that DQA1*Arg52 and DQB1*nonAsp57 are interacting. This study demonstrates that DQA1*Arg52, DQB1*nonAsp57, and DRB1*04 confer susceptibility for IDDM to Chinese children. A combination of DQA1*Arg52 and DRB1*04 confers the highest risk and it is suggested that a susceptibility gene might be situated between DQA1*Arg52 and DRB1*04 or both are synergistic. There is an interaction between DQA1*Arg52 and DQB1*nonAsp57 and homozygosity for DQA1*Arg52/DQB1*nonAsp57, which encodes four susceptibility DQ heterodimers, confers a high risk.  相似文献   

15.
OBJECTIVE: To investigate the correlation of HLA class I and class II antigens and alleles with various forms of myositis in Japanese patients. METHODS: Eighty-four Japanese patients with myositis [22 with polymyositis (PM), 46 with dermatomyositis (DM), 16 with myositis overlapping with other collagen vascular diseases] were typed serologically for HLA-A, B, C antigens. HLA-DRB1, DQA1, and DQB1 alleles were determined by polymerase chain reaction dependent DNA typing methods. Fifty-eight Japanese controls were typed serologically while HLA-DRB1, DQA1, and DQB1 allele typing was carried out in 175, 95, and 104 controls, respectively. RESULTS: HLA-B7 was higher in patients than controls [20.2 vs 6.9% in controls: p=0.02, odds ratio (OR)=3.4]. The increase of HLA-B7 was largely dependent on the increase in overlap patients (37.5%; p=0.005, OR=8.1). HLA-A24 and B52 were significantly decreased in PM as compared to DM, while CW3 was significantly increased in PM versus DM. DRB1*08 alleles were significantly increased in patients (36.9 vs 20.5% in controls; p=0.004, OR=2.3), especially in PM and DM. DQA1*0501 and DQB1*0301 were significantly decreased in patients [4.8 vs 13.7% in controls; p=0.04, OR=0.32, and 8.3 vs 20.2% in controls; p=0.02, OR=0.36, respectively]. CONCLUSION: HLA-class I and class II alleles associated with Japanese patients with myositis may be different from those associated with Caucasian patients.  相似文献   

16.
HLA incompatibility between bone marrow recipients and unrelated donors is one of the main obstacles in bone marrow transplantation. HLA class I and generic class II DR and DQ typing is generally performed by serology. Precise subtyping of HLA class II genes, however, can only be achieved by molecular genetic methods. Here, the final selection of serologically pretyped unrelated bone marrow donors by confirmatory PCR-SSP (PCR-sequence-specific primers) typing and subsequent nucleic acid sequence analysis of the second exon of DRB1, DRB3, DRB4, DRB5, DQB1, and DPB1 alleles is presented. Serologically identical potential marrow donors and their corresponding recipients were analyzed for HLA-DRB identity by PCR-SSP analysis. After solid-phase single-strand separation, direct sequencing of the allele- or group-specific DRB amplified products was performed by applying fluorophorlabelled sequencing primers. Electrophoretically separated sequencing products were detected by means of an automated DNA sequencer. Group-specific amplification and sequencing of DQB1 alleles was carried out for all potential bone marrow donors and recipients, while only the final donor-recipient pair was analyzed for DPB1 alleles. Thus, the presented amplification strategy in combination with direct sequencing of PCR products allows matching of bone marrow transplant pairs with the highest degree of reliability for the assessment of HLA class II identity.  相似文献   

17.
HLA DRB1, DQA1 and DQB1 alleles were determined by DNA PCR-SSO typing in a sample of 99 individuals originating from Wielkopolska (midwestern Poland). A high number of alleles (38 DRB1, 8 DQA1 and 14 DQB1) was detected at each locus, many of them presenting notable frequencies in this population. The three HLA loci are thus characterized by very high heterozygosity levels (93% for DRB1, 85% for DQA1, and 88% for DQB1), which confirms the results found for other European populations. A total of 6 DRB1-DQA1-DQB1 haplotypes are detected with an estimated frequency higher than 5%, namely, DRB1*1501-DQA1*0102-DQB1*0602, DRB1*0701-DQA1*0201-DQB1*0201, DRB1*0101-DQA1*0101-DQB1*0501, DRB1*1101-DQA1*0501-DQB1*0301, DRB1*03011-DQA1*0501-DQB1*0201, and DRB1*1301-DQA1*0103-DQB1*0603. A genetic distance analysis between the Polish and other world populations tested for HLA class II indicates that the Wielkopolska community is close to geographically close, rather than linguistically related populations from Europe. More generally, a good agreement between genetics and geography is found for DRB1 and DQB1 polymorphisms in Europe, suggesting that these two loci are highly informative for assessing historical relationships among humans.  相似文献   

18.
Current practice for the selection of unrelated donors involves serological typing of HLA-A, -B and -DR antigens, DNA analysis of the class II region and the MLR. However, even after matching for the class II loci at the DNA level, a significant proportion of matched unrelated pairs remain MLR reactive. Ideal matching for BMT would be a match for the whole MHC haplotype rather than individual HLA loci. In the present study, we have evaluated the complementary role of class III typing in determining MHC identity. A group of 86 donor/recipient pairs, of which 14 were unrelated, was investigated using C4, Bf, HSP70 and TNF DNA probes. Phenotypically HLA-matched siblings were always identical at the C4 locus which is the most polymorphic of all the loci examined. Nine of the 14 HLA serologically matched MLR non-reactive (RRI < 20%) unrelated pairs had class III mismatching. Four of these pairs with class III mismatching were matched at the DRB and DQB loci by RFLP analysis. These results demonstrate that serological identity, DRB/DQB RFLP-matching and a negative MLR do not always match the whole haplotype in unrelated pairs. It can be concluded that the linkage of the class III loci to both HLA regions makes this region a reliable marker of the whole MHC haplotype.  相似文献   

19.
Early case control studies found association of the DRB1 allele, DR3, with Graves' disease (GD). Recent reports, claim the DQA1 allele, DQA1*0501, to be the primary susceptibility determinant within the human leukocyte antigen (HLA) class II region. We typed 228 GD patients, 364 controls, and 98 families (parents, GD, and unaffected sibling) at the DRB1, DQB1, and DQA1 loci. The case control study showed an increased frequency in GD, compared to controls, of DRB1*0304 (47% vs. 24%; pc < 1.4 x 10(-5)), DQB1*02 (58% vs. 46%; pc < 0.035), DQB1*0301/4 (42% vs. 28%; pc < 3.5 x 10(-3)) and DQA1*0501 (67%, vs. 39%; pc < 7 x 10(-6)). The DRB1*0304-DQB1*02-DQA1*0501 haplotype was increased in GD (47%) vs. controls (24%; pc < 1.8 x 10(-5); odds ratio = 2.72). No independent association of these alleles was observed. Preferential transmission of DRB1*0304-DQB1*02-DQA1*0501 from parents heterozygous for the haplotype to GD siblings (72%) was seen in the families (chi2 = 11.95; 1 d.f.; P = 0.0005). Lack of preferential transmission to unaffected siblings (53%; chi2 = 0.19; 1 d.f.; P = NS) excluded segregation distortion. These results show that linkage disequilibrium between GD and the HLA class II region is due to the extended haplotype DRB1*0304-DQB1*02-DQA1*0501.  相似文献   

20.
PCR in combination with SSO probes was used to analyze the polymorphism in exons 2 and 3 of HLA-B27 subtypes and HLA-C-related alleles in two genetically distant Caucasian groups: Spanish and Jewish populations. AS patients and healthy B27 donors from both populations were analyzed in order to ascertain B27-Cw haplotypes. Three different ancestral haplotypes were found to be represented in both populations: B*2705/Cw*0102, B*2705/Cw*02022, and B*2702/Cw*02022. The B*2705 (92.5%) was the most frequent allele found in the Spanish population, carried by B*2705/Cw*0102 (60.9%) and B2705/Cw*02022 (30.4%) haplotypes. In contrast, B*2702 (59.4%) was the most prevalent allele found in the Jewish population and was carried by the B*2702/Cw*02022 (63.3%) haplotype. No different allelic and haplotypic distributions were among healthy and AS patients in either Spanish or Jewish populations. The differences found in the distribution of B27 haplotypes among Spanish and Jewish Caucasian populations are consistent with the genetic distance of these ethnic groups. When the Jewish population was subdivided into Ashkenazi (A) and non-Ashkenazi (NA) groups, no significant differences were observed in the distribution of B*2702/Cw*02022 haplotype. Minor differences were observed in the underrepresented B*2705 haplotypes. The present results reflect the ancestral affinities of A and NA Jewish populations. A possible HLA-B27 evolutive pathway in Caucasians is proposed according to the data available for the B27/Cw ancestral haplotypes in Spanish and Jewish groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号