首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MCF-7 human breast cancer cells selected in Adriamycin in the presence of verapamil developed a multidrug resistant phenotype, which was characterized by as much as 100,000-fold resistance to mitoxantrone, 667-fold resistance to daunorubicin, and 600-fold resistance to doxorubicin. Immunoblot and PCR analyses demonstrated no increase in MDR-1 or MRP expression in resistant cells, relative to parental cells. This phenotype is similar to one previously described in mitoxantrone-selected cells. The cells, designated MCF-7 AdVp, displayed a slower growth rate without alteration in topoisomerase II alpha level or activity. Increased efflux and reduced accumulation of daunomycin and rhodamine were observed when compared to parental cells. Depletion of ATP resulted in complete abrogation of efflux of both daunomycin and rhodamine. No apparent alterations in subcellular daunorubicin distribution were observed by confocal microscopy. No differences were noted in intracellular pH. Molecular cloning studies using DNA differential display identified increased expression of the alpha subunit of the amiloride-sensitive sodium channel in resistant cells. Quantitative PCR studies demonstrated an eightfold overexpression of the alpha subunit of the Na+ channel in the resistant subline. This channel may be linked to the mechanism of drug resistance in the AdVp cells. The results presented here support the hypothesis that a novel energy-dependent protein is responsible for the efflux in the AdVp cells. Further identification awaits molecular cloning studies.  相似文献   

2.
An in vitro model of acquired melphalan resistance was developed by serial incubation of an MCF-7 human breast cancer cell line in increasing concentrations of melphalan. The resulting derivative cell line, Me1R MCF-7, was 30-fold resistant to melphalan. Uptake studies demonstrated decreased initial melphalan accumulation in Me1R MCF-7 cells. Inverse-reciprocal plots of initial melphalan uptake revealed a 4-fold decrease in the apparent Vmax of Me1R MCF-7 compared with WT MCF-7 (516 amol cell-1 min-1 vs 2110 amol cell-1 min-1 respectively) as well as a decrease in the apparent Kt (36 microM vs 70 microM respectively). Two amino acid transporters have previously been identified as melphalan transporters: system L, which is sodium-independent and inhibited by 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH), and system ASC which is sodium dependent and unaffected by BCH. At low concentrations of melphalan (3-30 microM), 1mM BCH competition eliminated the differences between the two cell lines, thus implicating an alteration of the system L transporter in the transport defect in the resistant cells. Me1R MCF-7 cells were also evaluated for glutathione-mediated detoxification mechanisms associated with melphalan resistance. There was no difference between Me1R MCF-7 and WT MCF-7 in glutathione content, glutathione-S-transferase activity and expression of pi class glutathione S-transferase RNA. In addition, buthionine sulfoximine did not reverse melphalan resistance in Me1R MCF-7 cells. Therefore, Me1R MCF-7 cells provide an in vitro model of transport-mediated melphalan resistance in human breast cancer cells.  相似文献   

3.
Clinical chemotherapy of breast carcinomas must be considered insufficient, mainly due to the appearance of drug resistance. The multidrug resistance (MDR) phenotype, either intrinsically occurring or acquired, e.g., against a panel of different antineoplastic drugs, is discussed in relation to several MDR-associated genes such as the MDR-gene mdr1 encoding the P-glycoprotein (PGP), the MRP gene (multidrug resistance protein) encoding an MDR-related protein or the LRP gene encoding the lung resistance protein. Numerous experimental and clinical approaches aiming at reversing resistance require well-characterised in vitro and in vivo models. The aim of our work was to develop multidrug resistant sublines from human xenotransplanted breast carcinomas, in addition to the broadly used line MCF-7 and its multidrug resistant subline MCF-7/AdrR. MDR was induced in vitro with increasing concentrations of Adriablastin (ADR) for several weeks, resulting in a 3.5- to 35-fold increase in IC50 values using the MTT-test. Cell lines were cross-resistant toward another MDR-related drug, vincristine, but remained sensitive to non-MDR-related compounds such as cisplatin and methotrexate. The resistance toward Adriamycin and vincristine was confirmed in vivo by a lack of tumour growth inhibition in the nude mouse system. Gene expression data for the mdr1/PGP, MRP/MRP and LRP/LRP on both the mRNA (RT-PCR) and the protein levels (immunoflow cytometry) demonstrated that induction of mdr1 gene expression was responsible for the acquired MDR phenotype. Rhodamine efflux data, indicated by PGP overexpression, underlined the development of this MDR mechanism in the newly established breast carcinoma lines MT-1/ADR, MT-3/ADR and MaTu/ADR.  相似文献   

4.
In this study, we assessed the ability of a new anthracycline, moflomycin, to circumvent multidrug resistance. Moflomycin showed superior anti-proliferative activity compared to daunorubicin and doxorubicin on two resistant cell lines: leukemic HL-60 cell line resistant to daunorubicin (HL-60/DR) and breast cancerous cell line resistant to doxorubicin (MCF-7/AR). The effect of moflomycin on cell proliferation was correlated with an increased uptake and a decreased cellular efflux. The data obtained in the presence of the P-gp inhibitor, verapamil, confirmed the absence of interaction between P-gp and moflomycin. Our results indicate that moflomycin exhibits an important reduction in cross-resistance with daunorubicin and doxorubicin resulting from its ability to circumvent P-gp.  相似文献   

5.
The expression and stability of the estrogen receptor (ER) is the result of a complex process that is modulated by estrogens and antiestrogens. Regulation of the steady-state ER mRNA and protein levels in breast cancer cells appears to be the result of either of two distinct regulatory mechanisms. Estrogen exposure causes a rapid down-regulation of the steady-state level of ER mRNA and protein in model I regulation, as exemplified by the MCF-7:WS8 cell line. Conversely, in model II regulation, as observed in the T47D:A18 cell line, estrogen exposure causes an increase in the steady-state ER mRNA level and a maintenance of the ER protein level. In both these cell lines, the nonsteroidal antiestrogen 4-hydroxytamoxifen has little effect on the mRNA level but causes a net accumulation of the ER protein over time. In contrast, the pure antiestrogen ICI 182,780 causes a dramatic reduction of the ER protein in both the MCF-7:WS8 and T47D:A18 cell lines. This loss has little effect upon the ER mRNA level in the MCF-7:WS8 cells but leads to a decline in the ER mRNA in the T47D:Al8 cells. The estrogen-independent MCF-7:2A cell line, which has adapted to growth in estrogen free media, expresses two forms of the ER, a wild-type Mr66,000 ER and a mutant Mr77,000 ER (ER77). ER77 is the product of a genomic rearrangement resulting in a tandem duplication of exons 6 and 7 (J. J. Pink et al, Nucleic Acids Res., 24:962-969,1996). This exon duplication has abolished ligand binding by this protein. Here we demonstrate that the loss of ligand binding has eliminated the effects of 4-OHT and ICI 182,780 on the steady-state ER77 protein level. However, in the MCF-7:2A cells, antiestrogens affect the wild-type ER protein in the same manner as observed in the MCF-7:WS8 and T47D:A18 cells. Estrogen regulates the ER mRNA and wild-type ER and ER77 proteins in the MCF-7:2A cells in the same manner as observed in the MCF-7:WS8 cells. Interestingly, treatment of the MCF-7:2A cells with ICI 182,780 causes a slight increase in ER mRNA, which is reflected in a net increase in the ER77 protein but a dramatic decrease in the wild-type ER. The models presented here describe the response of two human breast cancer cell lines in short-term studies. These distinct regulation pathways are predictive of the response of these cell lines to long-term estrogen deprivation. This study illustrates two alternative regulation pathways that are present in ER-positive, estrogen-dependent breast cancer cells. This variable response highlights the diversity of responses potentially present in the heterogeneous cell populations of clinically observed breast cancer.  相似文献   

6.
7.
To investigate the role of protein kinase C (PKC) in the regulation of multidrug resistance and P-glycoprotein (P-gp) phosphorylation, the natural isomer of sphingosine (SPH), D-erythro sphingosine (De SPH), and its three unnatural stereoisomers were synthesized. The SPH isomers showed similar potencies as inhibitors of in vitro PKC activity and phorbol binding, with IC50 values of approximately 50 microM in both assays. Treatment of multidrug-resistant MCF-7ADR cells with SPH stereoisomers increased vinblastine (VLB) accumulation up to 6-fold at 50 microM but did not alter VLB accumulation in drug-sensitive MCF-7 wild-type (WT) cells or accumulation of 5-fluorouracil in either cell line. Phorbol dibutyrate treatment of MCF-7ADR cells increased phosphorylation of P-gp, and this increase was inhibited by prior treatment with SPH stereoisomers. Treatment of MCF-7ADR cells with SPH stereoisomers decreased basal phosphorylation of the P-gp, suggesting inhibition of PKC-mediated phosphorylation of P-gp. Most drugs that are known to reverse multidrug resistance, including several PKC inhibitors, have been shown to directly interact with P-gp and inhibit drug binding. SPH stereoisomers did not inhibit specific binding of [3H] VLB to MCF-7ADR cell membranes or [3H]azidopine photoaffinity labeling of P-gp or alter P-gp ATPase activity. These results suggest that SPH isomers are not substrates of P-gp and suggest that modulation of VLB accumulation by SPH stereoisomers is associated with inhibition of PKC-mediated phosphorylation of P-gp.  相似文献   

8.
9.
The procoagulant activity observed in many types of tissue and cultured cells is due to tissue factor, a 30 kd transmembrane protein. The mRNA for tissue factor is a 2.2-kb species, which in some non-cancer cells can be up-regulated or induced by cytokines or by serum stimulation. In this study, induction of procoagulant activity in cancer cells was evaluated using the breast cancer cell line, MCF-7, and an adriamycin resistant subline, AdrRMCF-7, which has increased tumorigenicity in nude mice compared to the parental cell line. Procoagulant activity was factor VIIa dependent and was inhibited by an anti-tissue factor antibody. MCF-7 cells had minimal tissue factor activity, while AdrRMCF-7 cells had an 10-fold increase compared to the parental line. This increase was not observed in MCF-7 cells transfected with the multi-drug resistant gene, which is associated with adriamycin resistance. Serum stimulation of quiescent MCF-7 cells increased tissue factor activity 5-fold over baseline level, but did not increase activity in cells grown in serum-replete medium. Tissue factor activity of AdrRMCF-7 quiescent cells and AdrMCF-7 cells grown in serum-replete medium was enhanced 2-fold by serum stimulation. The predominant tissue factor mRNA species in MCF-7 cells was a 3.2 to 3.4-kb band, which increased in response to serum stimulation of cells grown in serum-replete medium. The mature 2.2-kb tissue factor mRNA band was detected in quiescent MCF-7 cells within six hours of serum stimulation and remained present 24 hours after stimulation. Synthesis of the 2.2-kb tissue factor mRNA species in MCF-7 and AdrRMCF-7 cells correlated with appearance of procoagulant activity. Thus, while procoagulant activity correlates with the level of the 2.2-kb tissue factor mRNA species in these cancer cells, there are inherent differences in tissue factor activity, antigen, and mRNA levels, as well as in regulation of its synthesis between these cells.  相似文献   

10.
Sphinxolides, a newly described family of cytotoxins from the New Caledonian sponge Neosiphonia superstes, bear structural resemblance to scytophycins. We now demonstrate that the cytotoxicity of sphinxolides is associated with cell cycle arrest in G2-M and induction of apoptosis. Like scytophycins and cytochalasins, sphinxolides caused rapid loss of microfilaments in cultured cells, without affecting microtubule organization. Microfilament reassembly was very slow after removal of the sphinxolide, consistent with the slow recovery of cellular proliferation. Sphinxolides potently inhibited actin polymerization in vitro and the microfilament-dependent ATPase activity of purified actomyosin, indicating a direct effect on actin. Importantly, sphinxolides were equally cytotoxic toward MCF-7 human breast carcinoma cells and a subline which overexpresses P-glycoprotein (MCF-7/ADR). Similarly, overexpression of the multidrug resistance-associated protein MRP by HL-60 cells did not confer resistance to the sphinxolides. These studies demonstrate that sphinxolides are potent new antimicrofilament compounds that circumvent multidrug resistance mediated by overexpression of either P-glycoprotein or MRP. Therefore, these agents may be useful in the treatment of drug-resistant tumors.  相似文献   

11.
12.
Acquired drug resistance is a major factor in the failure of doxorubicin-based chemotherapy in breast cancer. We determined the ability of megestrol acetate and/or tamoxifen to reverse doxorubicin drug resistance in a doxorubicin-resistant breast cancer line (the human MCF-7/ADR). The cytotoxicity of doxorubicin, megestrol acetate, and/or tamoxifen was determined in the sensitive and resistant cell lines utilizing the sulphorhodamine B assay. Tamoxifen alone produced an IC50 (concentration resulting in 50% inhibition of control growth) of 10.6 microM, whereas megestrol acetate alone resulted in an IC50 of 48.7 microM in the MCF-7/ADR cell line. The IC50 of doxorubicin in MCF-7/ADR was 1.9 microM. Neither megestrol acetate alone nor tamoxifen alone at 1 or 5 microM altered the IC50 of doxorubicin. However, the combination of tamoxifen (1 or 5 microM) and megestrol acetate (1 or 5 microM) synergistically sensitized MCF-7/ADR cells. Additionally, megestrol acetate and tamoxifen inhibited iodoarylazidoprazosin binding to P-glycoprotein, and, in their presence, there was an increased doxorubicin accumulation in the MCF-7/ADR cells. Furthermore, the combination of tamoxifen and megestrol acetate had much less effect on the cytotoxicity of doxorubicin in MCF-7 wild-type cells. Clinically achievable concentrations of tamoxifen and megestrol acetate can largely sensitize MCF-7/ADR to doxorubicin. The combination of these three drugs in a clinical trial may be informative.  相似文献   

13.
The function of P-glycoprotein (Pgp), which confers multidrug resistance by active efflux of drug, is thought to be dependent on phosphorylation. Previous studies have suggested that protein kinase C (PKC) plays an important role in Pgp phosphorylation. We report here the effects of bryostatin 1, a unique PKC activator and inhibitor, on Pgp function in a multidrug-resistant MCF-7 human breast cancer subline which overexpresses PKC-alpha. Bryostatin 1 (100 nM) decreased Pgp phosphorylation after 24 h of treatment. In contrast, it did not affect Pgp function as demonstrated by the accumulation of [3H]vinblastine and rhodamine 123. We compared the effect of bryostatin 1 treatment on PKC-alpha with that of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (200 nM). 12-O-tetradecanoylphorbol-13-acetate caused translocation of PKC-alpha from the cytosol to the cell membrane after a 10-min treatment and its down-regulation after 24 h of treatment. Likewise, bryostatin 1 (100 nM) caused translocation, but only after longer treatment (1 h), and it caused down-regulation of PKC-alpha at 24 h of treatment. Thus, while the MCF-7TH cells overexpress the PKC-alpha isoform, and its down-regulation by bryostatin 1 is associated with decreased Pgp phosphorylation, these alterations do not modulate drug transport. We conclude that, while bryostatin 1 may be useful clinically because of its ability to inhibit PKC, it is not able to reverse Pgp-mediated multidrug resistance.  相似文献   

14.
Multidrug-resistant cancer cells display elevated levels of glucosylceramide (Lavie, Y., Cao, H. T., Volner, A., Lucci, A., Han, T. Y., Geffen, V., Giuliano, A. E., and Cabot, M. C. (1997) J. Biol. Chem. 272, 1682-1687). In this study, we have introduced glucosylceramide synthase (GCS) into wild type MCF-7 breast cancer cells using a retroviral tetracycline-on expression system, and we developed a cell line, MCF-7/GCS. MCF-7/GCS cells expressed an 11-fold higher level of GCS activity compared with the parental cell line. Interestingly, the transfected cells demonstrated strong resistance to adriamycin and to ceramide, whereas both agents were highly cytotoxic to MCF-7 cells. The EC50 values of adriamycin and ceramide were 11-fold (p < 0.0005) and 5-fold (p < 0.005) higher, respectively, in MCF-7/GCS cells compared with MCF-7 cells. Ceramide resistance displayed by MCF-7/GCS cells closely paralleled the activity of expressed GCS with a correlation coefficient of 0.99. In turn, cellular resistance and GCS activity were dependent upon the concentration of the expression mediator doxycycline. Adriamycin resistance in MCF-7/GCS cells was related to the hyperglycosylation of ceramide and was not related to shifts in the levels of either P-glycoprotein or Bcl-2. This work demonstrates that overexpression of GCS, which catalyzes ceramide glycosylation, induces resistance to adriamycin and ceramide in MCF-7 breast cancer cells.  相似文献   

15.
The interaction of growth factors, such as epidermal growth factor (EGF) with their receptors, on breast cancer cells can lead to the hydrolysis of phospholipids and release of fatty acids, such as arachidonic acid, which can be further metabolized by the lipoxygenase (LO) pathway. Several LO products have been shown to stimulate oncogenes and have mitogenic and chemotactic effects. In this study, we have evaluated the regulation of 12-LO activity and expression in breast cancer cells and tissues. Leukocyte-type 12-LO messenger RNA (mRNA) expression was studied by a specific RT-PCR method in matched, normal, uninvolved and cancer-involved breast tissue RNA samples from six patients. In each of these six patients, the cancer-involved section showed a much higher level of 12-LO mRNA than the corresponding normal section. 12-LO mRNA levels also were greater in two breast cancer cell lines, MCF-7 and COH-BR1, compared with the nontumorigenic breast epithelial cell line, MCF-10F. The growth of the MCF-7 cells was significantly inhibited by two specific LO blockers but not by a cyclooxygenase blocker. Treatment of serum-starved MCF-7 cells with EGF for 4 h led to a dose-dependent increase in the formation of the 12-LO product, 12-hydroxyeicosatetraenoic acid. EGF treatment also increased the levels of the leukocyte-type 12-LO protein expression at 24 h. These results suggest that activation of the 12-LO pathway may play a key role in basal and EGF-induced breast cancer cell growth.  相似文献   

16.
When five substituents of hapalosin were placed on D-glucose, molecular modeling revealed that the substituents on mimetics 2 and 3 occupy similar spatial positions as the corresponding substituents on hapalosin. Mimetic 3 and all the glucopyranoside intermediates generated in its synthesis were assessed for their ability to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) or the multidrug resistance-associated protein (MRP). None of the sugar compounds were as effective as hapalosin in inhibiting P-gp in cytotoxicity and drug accumulation assays using MCF-7/ADR cells. By contrast, four D-glucose compounds exhibited similar efficacy as hapalosin in antagonizing MRP in cytotoxicity assays with HL-60/ADR cells.  相似文献   

17.
The aim of this study was to investigate the link between protein kinase C (PKC) and multidrug resistance (mdr) phenotype. The expression of both was studied in doxorubicin-resistant MCF-7/Adr cells as they reverted to the wild-type phenotype when cultured in the absence of drug. The following parameters were measured in cells 4, 10, 15, 20 and 24 weeks after removal of doxorubicin; (1) sensitivity of the cells towards doxorubicin; (2) levels of P-glycoprotein (P-gp) and MDR1 mRNA; (3) levels and cellular localization of PKC isoenzyme proteins alpha, theta and epsilon; and (4) gene copy number of PKC-alpha and MDR1 genes. Cells lost their resistance gradually with time, so that by week 24 they had almost completely regained the drug sensitivity seen in wild-type MCF-7 cells. P-gp levels measured by Western blot mirrored the change in doxorubicin sensitivity. By week 20, P-gp had decreased to 18% of P-gp protein levels at the outset, and P-gp was not detectable at week 24. Similarly, MDR1 mRNA levels had disappeared by week 24. MCF-7/Adr cells expressed more PKCs-alpha and -theta than wild-type cells and possessed a different cellular localization of PKC-epsilon. The expression and distribution pattern of these PKCs did not change for up to 20 weeks, but reverted back to that seen in wild-type cells by week 24. MDR1 gene amplification remained unchanged until week 20, but then was lost precipitously between weeks 20 and 24. The PKC-alpha gene was not amplified in MCF-7/Adr cells. The results suggest that MCF-7/Adr cells lose MDR1 gene expression and PKC activity in a co-ordinate fashion, consistent with the existence of a mechanistic link between MDR1 and certain PKC isoenzymes.  相似文献   

18.
The mechanism of glucose deprivation-induced activation of Lyn kinase (Lyn), c-Jun N-terminal kinase 1 (JNK1) and increased expression of basic fibroblast growth factor (bFGF) and c-Myc was investigated in MCF-7/ADR adriamycin-resistant human breast carcinoma cells. Glucose deprivation significantly increased steady state levels of oxidized glutathione content (GSSG) and intracellular prooxidants (presumably hydroperoxides) as well as caused the activation of Lyn, JNK1, and the accumulation of bFGF and c-Myc mRNA. The suppression of GSSG accumulation and prooxidant production by treatment with the thiol antioxidant, N-acetylcysteine, also suppressed all the increases in kinase activation and gene expression observed during glucose deprivation. In addition, glucose deprivation was shown to induce oxidative stress in IMR90 SV40 transformed human fibroblasts, indicating that this phenomena is not limited to the MCF-7/ADR cell line. These and previous observations from our laboratory show that glucose deprivation-induced oxidative stress in MCF-7/ADR cells activates signal transduction involving Lyn, JNK1, and mitogen activated protein kinases (ERK1/ERK2) which results in increased bFGF and c-Myc mRNA accumulation. These results provide support for the hypothesis that alterations in intracellular oxidation/reduction reactions link changes in glycolytic metabolism to signal transduction and gene expression in these human tumor cells.  相似文献   

19.
We have examined the effect of transforming growth factor beta 1 (TGF-beta 1) overexpression in human breast cancer cell tumorigenicity in athymic mice. Estrogen-dependent MCF-7 cells were stably transfected with pSVTGF beta 1. A clone was isolated which overexpressed TGF-beta 1 mRNA and secreted > 10-fold more TGF-beta activity into the tissue culture medium. Similar to the parent line, the MCF-7/TGF-beta 1 cells were relatively insensitive to exogenous TGF-beta 1 and exhibited low levels of TGF-beta receptors. Clonogenicity in soft agarose, doubling time, morphology, and sensitivity to 17 beta-estradiol and the antiestrogen tamoxifen were not altered in the transfected cells. Inoculation s.c. of MCF-7/TGF-beta 1 cells in ovariectomized nude mice resulted in 100% tumor formation which was totally abrogated by i.p. administration of the neutralizing anti-TGF-beta 2G7 IgG2B. The parent cells formed tumors only after estrogen supplementation. By immunohistochemistry, higher levels of TGF-beta 1 protein were detected in MCF-7/TGF-beta 1 tumors than in estrogen-induced parent MCF-7 tumors. Administration of 1 microgram TGF-beta 1 i.p. daily for 3 weeks after tumor cell inoculation transiently supported estrogen-independent growth of parent MCF-7 tumors in castrated nude mice. These data indicate that overexpression of TGF-beta 1 in human breast cancer cells can contribute to their escape from hormone dependence.  相似文献   

20.
Tamoxifen is an antiestrogen used in adjuvant therapy of breast carcinoma and could potentially prevent the development of mammary cancer. While it is widely clinically used, its exact mechanisms of action are not yet fully elucidated. MCF-7/6 cells are estrogen receptor-positive invasive human breast cancer cells with a functionally inactive cell surface E-cadherin. In this study, we report that tamoxifen, and to a lesser extent its metabolites 4-OH-tamoxifen and N-desmethyltamoxifen, restore the function of E-cadherin in MCF-7/6 cells. In an aggregation assay, 10(-6) M tamoxifen significantly increases the aggregation of MCF-7/6 cells. This effect is abrogated by a monoclonal antibody against E-cadherin (HECD-1), is fast (within 30 min), and does not require de novo protein synthesis. Tamoxifen was also found to inhibit the invasion of MCF-7/6 cells in organ culture. Our data is the first demonstration that tamoxifen can activate the function of an invasion suppressor molecule and suggest that the restoration of E-cadherin function may contribute to the therapeutic benefit of tamoxifen in breast cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号