首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了316LN奥氏体不锈钢在1050~1200 ℃、应变速率0.1,1和50 s-1下的压缩变形行为,分析了变形温度和应变速率对热流曲线的影响。基于位错密度理论,建立了316LN钢的热变形本构模型,并揭示了316LN钢的软化机理。结果表明,在高温低应变速率(小于0.1 s-1)条件下,动态再结晶(DRX)为主导软化机理;在高温高应变速率(大于1 s-1)条件下,动态回复(DRV)为主导软化机理;在高温及应变速率为0.1和1 s-1条件下,DRV和DRX共同作用。构建的模型可以很好地预测316LN钢的热变形行为,其Pearson相关系数为0.9956,平均相对误差绝对值为3.07%,为一个精确的本构模型。  相似文献   

2.
Dynamic recrystallization behavior of AISI 321 austenitic stainless steel were studied using hot compression tests over the range of temperatures from 900 °C to 1200 °C and strain rates from 0.001 s-1 to 1 s-1. The critical strain and stress for initiation of dynamic recrystallization were determined by plotting strain hardening rate vs. stress curves and a constitutive equation describing the flow stress at strains lower than peak strain. Also, the strain at maximum flow softening was obtained and the effect of deformation conditions (Z parameter) on the critical strain and stress were analyzed. Finally, the volume fraction of dynamic recrystallization was calculated at different deformation conditions using these critical values. Results showed that the model used for predicting the kinetics of dynamic recrystallization has a great consistency with the data, in the form of θ-ε curves, directly acquired from experimental flow curves.  相似文献   

3.
A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range ?30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10?3 to 1 s?1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type $ \dot{\upvarepsilon } = A\sinh (\upalpha /\upsigma )^{n} \exp ( - Q/RT) $ .  相似文献   

4.
A journey with prasad’s processing maps   总被引:1,自引:0,他引:1  
The constitutive flow behavior of austenitic stainless steel types AISI 304L, 316L, and 304 in the temperature range of 873 K (600 °C) to 1473 K (1200 °C) and strain-rate range of 0.001 s−1–100 s−1 has been evaluated with a view to establishing processing-microstructure-property relationships during hot working. The technique adopted for the study of constitutive behavior is through establishing processing maps and instability maps, and interpreting them on the basis of dynamic materials model (DMM). The processing maps for 304L have revealed a domain of dynamic recrystallization (DRX) occurring at 1423 K (1150 °C) at 0.1 s−1, which is the optimum condition for hot working of this material. The processing maps of 304 predict DRX domain at 1373 K (1100 °C) and 0.1 s−1. Stainless steel type 316L undergoes DRX at 1523 K (1250 °C) and 0.05 s−1. At 1173 K (900 °C) and 0.001 s−1 this material undergoes dynamic recovery (DRY). In the temperature and strain rate regimes other than DRX and DRY domains, austenitic stainless steels exhibit flow localization. Large-scale experiments using rolling, forging, and extrusion processes were conducted with a view to validating the conclusions arrived at from the processing maps. The “safe” processing regime predicted by processing maps has been further refined using the values of apparent activation energy during deformation. The validity and the merit of this refining procedure have been demonstrated with an example of press forging trials on stainless steel 316L. The usefulness of this approach for manufacturing stainless steel tubes and hot rolled plates has been demonstrated.  相似文献   

5.
任树兰  刘建生  李景丹  王瑞  段兴旺 《锻压技术》2017,(10):162-165,169
为了研究铸态316LN钢ESR材料的高温变形行为,建立铸态316LN钢ESR材料高温塑性本构方程,采用Gleeble-1500D热模拟试验机对316LN钢进行等温压缩试验,研究了316LN钢ESR材料在变形温度为900~1200℃、应变速率为0.001~1 s~(-1)、最大变形量为55%条件下热变形行为,并测得相应的流动应力-应变曲线。结果表明,在高变形温度、低应变速率的条件下,更有利于动态再结晶的发生。通过对试验数据进行多元线性拟合计算,得到了316LN钢的热变形激活能,建立了316LN钢ESR材料的高温塑性本构方程。  相似文献   

6.
The flow stress behavior of spray-formed Al-9Mg-1.1Li-0.5Mn alloy was studied using thermal simulation tests on a Gleeble-3500 machine over deformation temperature range of 300-450 °C and strain rate of 0.01-10 s?1. The microstructural evolution of the alloy during the hot compression process was characterized by transmission electron microscopy (TEM) and electron back scatter diffractometry (EBSD). The results show that the flow stress behavior and microstructural evolution are sensitive to deformation parameters. The peak stress level, steady flow stress, dislocation density and amount of substructures of the alloy increase with decreasing deformation temperature and increasing strain rate. Conversely, the high angle grain boundary area increases, the grain boundary is in serrated shape and the dynamic recrystallization in the alloy occurs. The microstructure of the alloy is fibrous-like and the main softening mechanism is dynamic recovery during steady deformation state. The flow stress behavior can be represented by the Zener-Hollomon parameter Z in the hyperbolic sine equation with the hot deformation activation energy of 184.2538 kJ/mol. The constitutive equation and the hot processing map were established. The hot processing map exhibits that the optimum processing conditions for Al-9Mg-1.1Li-0.5Mn alloy are in deformation temperature range from 380 to 450 °C and strain rate range from 0.01 to 0.1 s?1.  相似文献   

7.
The hot deformation characteristics of as-forged Ti?3.5Al?5Mo?6V?3Cr?2Sn?0.5Fe?0.1B?0.1C alloy within a temperature range from 750 to 910 °C and a strain rate range from 0.001 to 1 s?1 were investigated by hot compression tests. The stress?strain curves show that the flow stress decreases with the increase of temperature and the decrease of strain rate. The microstructure is sensitive to deformation parameters. The dynamic recrystallization (DRX) grains appear while the temperature reaches 790 °C at a constant strain rate of 0.001 s?1 and strain rate is not higher than 0.1 s?1 at a constant temperature of 910 °C. The work-hardening rate θ is calculated and it is found that DRX prefers to happen at high temperature and low strain rate. The constitutive equation and processing map were obtained. The average activation energy of the alloy is 242.78 kJ/mol and there are few unstable regions on the processing map, which indicates excellent hot workability. At the strain rate of 0.1 s?1, the stress?strain curves show an abnormal shape where there are two stress peaks simultaneously. This can be attributed to the alternation of hardening effect, which results from the continuous dynamic recrystallization (CDRX) and the rotation of DRX grains, and dynamic softening mechanism.  相似文献   

8.
316LN奥氏体不锈钢的高温流变行为与本构模型   总被引:1,自引:0,他引:1       下载免费PDF全文
利用Gleeble-3500热模拟试验机对锻造态316LN不锈钢进行了等温热压缩试验,研究了应变速率为0.001~1 s-1、变形温度为1223~1523 K、压缩变形量为65%条件下材料的高温流变行为,建立了流变应力本构模型,并将其应用于Deform-3D软件平台,通过导入新材料数据,考虑界面摩擦等尺寸仿真了热模拟试验结果。结果表明:相同应变速率下,随着变形温度升高,316LN奥氏体不锈钢的压缩应力逐渐减小;相同变形温度下,随着应变速率增加,材料的压缩应力逐渐增大;且在真应力-真应变曲线中,随应变量增大,压应力在后期逐渐达到一个稳定值;考虑界面摩擦因数,并利用Arrhenius本构模型进行变形模拟仿真说明了本构方程和仿真模型的有效性和可靠性,可为316LN不锈钢材料的工程应用提供研究基础和理论依据。  相似文献   

9.
High temperature compressive deformation behaviors of PM-TiAl alloy containing Nb particles (Ti–45Al–5Nb–0.4W/2Nb (at. %)) were investigated at temperatures ranging from 1050 °C to 1200 °C, and strain rates from 0.001 s−1 to 1 s−1. The flow curves were employed to develop constitutive equations, and the apparent activation energy of deformation Q was determined as 447.35 kJ/mol. A revised processing map was constructed on the basis of the flow stress, which can accurately describe the deformation behaviors and predict the optimum hot forging condition. The addition of 2% Nb particles reduces the peak stress and increases the activation energy of TiAl-based intermetallic, however, it increases the instable domain in the processing map.  相似文献   

10.
B. Liu  Y. Liu  Y.P. Li  W. Zhang  A. Chiba 《Intermetallics》2011,19(8):1184-1190
The correlation between hot deformation parameters and the workability of β-stabilized Ti–45Al–7Nb–0.4W–0.15B (at. %) alloy was studied in the temperature range 1000–1200 °C and the strain rate range 0.001–1 s?1. Deformation mechanisms were characterized by detailed analyses of the deformation behavior and microstructural observations. The results indicate that the deformation and recrystallization occurred preferentially in the grain boundary β phases because its good high temperature deformability enhances grain boundary sliding and migration, and thus improves the workability. Decomposition of the β phase to α2 and γ phases partly accommodates the stress concentration and is thus beneficial in hot deformation. Appropriate deformation processing parameters were suggested based on the processing map, and were successfully applied in the quasi-isothermal canned forging of industrial-scale billets.  相似文献   

11.
通过Gleeble热模拟实验机在1000~1200℃,应变速率为0.01~10 s~(-1)条件下的近等温热模拟压缩实验,建立了316LN双曲正弦的流动应力预测模型及其热加工图。该流动应力预测模型考虑了实验过程中塑性变形和摩擦引起的温升,对流动应力进行了修正,考虑应变对流动应力预测模型参数的影响,获得了统一流动应力预测模型,模型预测值与实验值的相关系数为0.992,平均相对误差为4.43%;热加工图基于Prasad动态材料模型分别获得了不同应变速率、温度条件下的能量耗散率和失稳系数;分析了应变量、温度和应变速率对于能量耗散率和失稳系数的影响。结果表明:实验条件下最大能量耗散率值为0.38,且高应变速率下失稳,并通过显微组织分析对热加工图进行了验证。  相似文献   

12.
采用Gleeble-3500热模拟试验机对在变形温度500~650℃和应变速率0.001~1 s-1条件下的60NiTi合金进行热压缩变形,分析其热变形行为和显微组织,建立变形本构模型,绘制热加工图。结果表明,当压缩温度升高或应变速率降低时,峰值应力减小。合金的热变形激活能为327.89 k J/mol,热加工工艺参数为变形温度600~650℃和应变速率0.005~0.05 s-1。当变形温度升高时,合金的再结晶程度增大;当应变速率增大时,位错密度和孪晶数量增大,Ni3Ti相易于聚集;Ni3Ti析出相有利于诱发合金基体的动态再结晶。动态回复、动态再结晶和孪生是60NiTi合金热变形的主要机制。  相似文献   

13.
Magnesium (Mg) grains show anisotropic corrosion behavior, which implies that the single-phase, hot-rolled Mg alloy AZ31 sheet, if highly textured, will have different corrosion performance depending on its crystallographic orientation of the grains. Its rolling surface, dominated by (0001) basal crystallographic planes, is more corrosion resistant than its cross-section surface, which is mainly composed of $ \{ 10\overline{1} 0\} $ and $ \{ 11\overline{2} 0\} $ prismatic crystallographic planes. Furthermore, grain refinement by hot rolling is beneficial to the overall corrosion resistance of AZ31 because of the dissolution of AlMn(Fe) intermetallic precipitates in the alloy. Surface compressive deformation machining can lead to refined grains and an expected preferred grain orientation, thus improving the corrosion resistance of AZ31 alloy.  相似文献   

14.
The hot deformation characteristics of Haynes230 has been investigated in the temperature range 1050–1250 °C and strain rate range 0.001–10 s?1 using hot compression tests. Power dissipation map for hot working are developed on the basis of the Dynamic Materials Model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring in the temperature range of 1200–1250 °C and in the strain rate range of 0.001–0.03 s?1, which associated with grain coarsening; the other occurring in the temperature range of 1100–1200 °C and strain rate range of 0.001–0.01 s?1, which are the optimum condition for hot working of this material. The average apparent activation energy for hot deformation is calculated to be 449 kJ/mol. The material undergoes flow instabilities at temperatures of 1050–1100 °C and at strain rates of 1–10 s?1, as predicted by the continuum instability criterion. The manifestations of the instabilities have been observed to be adiabatic shear bands which are confirmed by optical observation.  相似文献   

15.
Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s?1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s?1 by combining the processing map with microstructural observation.  相似文献   

16.
In this study, the hot deformation behavior of Ni49Ti36Hf15 alloy was investigated. Compression tests were carried out at temperatures ranging from 800 to 1100?°C and at the strain rates of 0.001?C1/s. The peak stress decreases with increasing deformation temperature and decreasing strain rate, a behavior which can be described by plotting the Zener-Hollomon parameter as a function of stress. It was realized that dynamic recrystallization (DRX) was responsible for flow softening. Most of the samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall down stress. Microstructure evolution showed that new recrystallized grains formed in the vicinity of grain boundaries. The hyperbolic-sine-type constitutive model of Ni49Ti36Hf15 alloy was obtained to provide basic data for determining reasonable hot-forming process. The activation energy for hot deformation of the Ni49Ti36Hf15 alloy was close to 410?kJ/mol.  相似文献   

17.
本文借助Gleeble-3800热模拟试验机系统地研究了铸态粗晶Ti-5553合金在温度700 ℃~1100 ℃、应变速率为0.001 s-1~10 s-1条件下的高温变形行为。研究结果表明合金的流变应力对变形温度和速率都有强敏感性,流变软化过程也随变形参数的改变呈现出不同的模式。通过经典的动力学模型,建立了合金高温变形的本构关系和激活能分布图,进一步基于动态材料模型构建了合金的热加工图并实现了对不同加工区间变形机制的识别。合金在低温区(700 ℃)和高速率区( 1 s-1)均展现出失稳变形的特征,包括外部开裂、绝热剪切带、局部流变等机制,在实际加工中应对这些加工区域进行规避。合金在800 ℃及中低速率( 0.1 s-1)变形下的主导机制为α相的动态析出,在中高温(900 ℃-1100 ℃)及中低速率变形下的主导机制为动态回复与动态再结晶的结合。此外,合金在高温较低应变速率(1100 ℃/0.01 s-1)条件的变形中表现出大范围动态再结晶的行为特点并伴随稳定的流变软化,因此此条件附近的参数区间被认定为该合金的最优加工窗口,应在实际加工中给予优先考虑。  相似文献   

18.
Hot deformation behavior and processing maps of the 2099 Al-Li alloy are investigated by tensile test at the temperature range from 250 to 450 °C and the strain rate range from 0.001 to 5.0 s?1. The typical true stress-true strain curves show that the flow stress increases with increasing the strain rate and decreasing the deforming temperature. All curves exhibit rapid work hardening at an initial stage of strain followed by remarkable dynamic softening. Based on the flow stress behavior, the processing maps are calculated and analyzed according to the dynamic materials model (DMM). The processing maps exhibit an instability domain in the temperature and strain rate ranges: T = 250-260 °C and \(\dot{\upvarepsilon }\)  = 0.1-0.5 s?1. The maps also exhibit an optimum hot working condition in the stability domain that occurs in the temperature of 400 °C for a strain rate of 0.001 s?1 and having a maximum efficiency of 60%. The microstructural examinations exhibit the occurrence of dynamic recovery (DRV) during hot deformation of the 2099 alloy which is the dominant softening mechanism in the alloy. The fracture behavior changes from a brittle fracture to a ductile fracture as strain rate decreases and temperature increases.  相似文献   

19.
Hot deformation behavior of the Ni-based superalloy IN-738LC was investigated by means of hot compression tests over the temperature range of 1000-1200 °C and strain rate range of 0.01-1 s?1. The obtained peak flow stresses were related to strain rate and temperature through the hyperbolic sine equation with activation energy of 950 kJ/mol. Dynamic material model was used to obtain the processing map of IN-738LC. Analysis of the microstructure was carried out in order to study each domain’s characteristic represented by the processing map. The results showed that dynamic recrystallization occurs in the temperature range of 1150-1200 °C and strain rate of 0.1 s?1 with the maximum power dissipation efficiency of 35%. The unstable domain was exhibited in the temperature range of 1000-1200 °C and strain rate of 1 s?1 on the occurrence of severe deformation bands and grain boundary cracking.  相似文献   

20.
The hot deformation behavior of AMS 5708 nickel-based superalloy was investigated by means of hot compression tests and a processing map in the temperature range of 950-1200 °C and a strain rate range of 0.01-1 s?1 was constructed. The true stress-true strain curves showed that the maximum flow stress decreases with the increase of temperature and decrease of strain rate. The developed processing map based on experimental data, showed variations of efficiency of power dissipation relating to temperature and strain rate at constant strain. Interpretation of the processing map showed one stable domain, in which dynamic recrystallization was the dominant microstructural phenomenon, and one instability domain with flow localization. The results of interpretation of flow stress curves and processing map were verified by the microstructure observations. There are two optimum conditions for hot working of this alloy with efficiency peak of 0.36: the first is at 1150 °C for a strain rate of 1 s?1 that produces a fine grained microstructure. The second is at 1200 °C for a strain rate of 0.01 s?1 that produces a coarse grained microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号