首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate processing-microstructure relationships in the production of Al2O3 particle reinforced copper composites by solidification processing. We show that during production of the composites by gas-pressure infiltration of packed Al2O3 particle preforms with liquid Cu or with liquid Cu8wt%Al at either 1,150 or 1,300 °C, capillarity-driven transport of alumina can cause rounding of the Al2O3 particles. We use quantitative metallography to show that the extent of particle rounding increases markedly with temperature and with the initial aluminum concentration in the melt. An analysis of the thermodynamics and kinetics governing the transport of alumina in contact with molten copper, considering both interfacial and volume diffusion, leads to propose two mechanisms for the rounding effect, namely (i) variations in the equilibrium concentration of oxygen in the melt as affected by the initial aluminum concentration, or (ii) segregation of aluminum to the interface with the ceramic.  相似文献   

2.
Studies of inclusion behavior at the metal–slag interface are of great importance for the steel industry in order to obtain better control of the size and of inclusions as well as improving the steel quality and casting process. In this work the agglomeration of liquid Al2O3–CaO particles at the liquid steel–liquid slag interfaces are studied with a confocal scanning laser microscope. In addition, the agglomeration of liquid Al2O3–CaO inclusions already transferred to the slag is investigated. It is found that agglomeration of the liquid inclusions at the steel–slag interface could only take place when the inclusions were forced towards each other, while the agglomeration of liquid particles was seen to be noticeably enhanced when the particles were already in the slag.  相似文献   

3.
AgI–Al2O3 nanocomposites are investigated by high-resolution electron microscopy and luminescence spectroscopy. The results show that both crystalline and amorphous phases coexist in AgI–Al2O3 composites. At sufficiently high alumina content, almost all AgI occurs as amorphous spherical nanoparticles distributed uniformly on alumina surfaces. The amorphous phase exhibits unusual luminescence spectra with a single, very broad nonstructured band. The amorphous phase is stabilized on AgI–alumina interfaces with the relative concentration progressively increasing with the Al2O3 fraction. The thickness of the interface amorphous layer adjacent to Al2O3 particles estimated by means of a simple brick-wall model is about 3 nm.  相似文献   

4.
The microstructure evolution of Ti–43Al–3Si (at-%) alloy solidified in alumina crucible was investigated by directional solidification technology. After directional solidification, the microstructure of the alloy is consisted of γ-TiAl, α2-Ti3Al, ξ-Ti5Si3 phases and Al2O3 particles. There are three morphologies of ξ phases formed in the alloy, namely, long rod-like, cluster-like with eutectic morphology, and needle-like shape. The volume fraction of ξ phases decreases with increasing growth rates. Al2O3 particles broke from the crucible and enter into the melt by the thermal physical erosion. Al2O3 particles enrich in the liquid phase with the moving of solid-liquid interface, and are captured or entrapped by dendrites during solidification. The Al2O3 particles mainly distributed in the interdendritic region, and some particles exist in dendrites.  相似文献   

5.
Al-Al2O3-MgO cast particle composites prepared by an MgO coating technique were investigated for their microstructural and mechanical property features. In all, sixteen compositions of the composite were subjected to this study. Generally, a uniform distribution of Al2O3 particles was observed in the composites. But in the upper half portion of the cylindrical castings, Al2O3 particles were found to segregate along the grain boundaries and also within the grain-forming chain-like structures. The microhardness of the base matrix revealed that the retention of submicrometre MgO particles causes dispersion strengthening. In the case of maximum strengthening, the microhardness of the base matrix rises to 35 kg mm–2 from 19 kg mm–2 for as-cast pure aluminium. The composites also displayed excellent high-temperature tensile properties up to 250°C (523 K). At the level of 21%V f retention of Al2O3, the composite displayed a UTS value of 110 MN m–2 with corresponding 0.2% offset yield strength of 65 MN m–2 and 12% elongation at ambient temperature. At 150° C (423 K) and 250° C (523 K), the composite retains 69% and 53%, respectively, of its room-temperature UTS value. This was the optimum retention of Al2O3 and the best composite obtained in the present work. The excellent high-temperature characteristics of the composite are thought to be due to the sum total effect of both the submicrometre MgO particles and the coarser Al2O3 particles retained in the aluminium base matrix.  相似文献   

6.
The fracture toughness and behaviour of COMRAL-85TM, a 6061 aluminium–magnesium–silicon alloy reinforced with 20 vol% Al2O3-based polycrystalline ceramic microspheres, and manufactured by a liquid metallurgy route, have been investigated. Fracture toughness tests were performed using short rod and short bar (chevron-notch) specimens machined from extruded 19 mm diameter rod, heat treated to the T6 condition. The fracture toughness in the R–L orientation was found to be lower than in the C–R or L–R orientations owing to the presence of particle-free bands in the extrusion direction. Short rod tests were also conducted for the R–L orientation on six powder metallurgy composites with particle volume fractions ranging between 5% and 30%. It was found that the fracture toughness decreased progressively with particle volume fraction, but at a decreasing rate. A detailed examination of the fracture behaviour was made for both the liquid metallurgy and powder metallurgy processed composites.  相似文献   

7.
Ionic conductivity measurements were performed on polycrystalline CaF2, BaF2 and those dispersed with Al2O3 particles. The ionic conductivity of both CaF2 and BaF2 increased by about 1 to 2 orders of magnitude by dispersion of Al2O3 particles, while X-ray diffraction measurements showed there were no other phases present other than fluoride and Al2O3. The conductivity of the dispersed system strongly depended on the particle size and the concentration of Al2O3, which suggested the high ionic-conductivity layers were formed at the interface between the ionic conductor matrix and the Al2O3 particles. The effective thickness and electrical conductivity of the interface layer at 500° C were calculated, using a simple mixing model, to be 0.3 to ~ 0.6m and ~ 10–3 S cm–1, respectively.  相似文献   

8.
The spray deposition process has been employed in synthesis of Al-4.5Cu-10Al2O3 and Al-4.5Cu-10Al2O3-10Pb based composites. The microstructure and wear characteristics of composites were investigated. The rapid solidification inherent in spray deposition processing resulted in a uniform dispersion of Al2O3 and Pb particles co-existing in the matrix of the- primary α-phase. The grain size of the Al-4.5Cu-10Al2O3-Pb composite was observed to be higher than that of the Al-4.5Cu-10Al2O3 composite in various sections of the spray deposit. The wear rate of composite materials decreased with addition of Pb phase. This behavior is discussed in the light of the microstructural modification induced by spray deposition and the morphology of debris particles on the wear track surfaces. The wear characteristics of the composites are compared with that of the liquid immiscible Al-4.5Cu-10Pb alloy.  相似文献   

9.
A range of Al2O3-Cr and Al2O3-Cr/Ni composites have been made using either pressureless sintering in the presence of a graphite bed or hot pressing. Examination of the microstructures shows that they are fully dense (typically 98–99% of the theoretical density) and that the micrometre-scale metallic particles remain discrete and homogeneously dispersed in all composites. All of the hot pressed specimens had higher flexural strengths than the sintered materials. Within each processing route, the composites had slightly lower strength values than the equivalent monolithic alumina specimens. This was attributed to weak interfacial bonding. Fracture toughness behaviour was investigated using indentation and double cantilever beam methods. All of the composites were found to be tougher than the parent alumina and to show resistance-curve behaviour. For the composites, maximum fracture toughness values were 5–6 MPa m1/2 (about double the value for alumina) for process zone sizes of a few millimetres, although steady state was not reached in the limited number of specimens tested. Examination of fracture surfaces and indentation cracks showed that the toughening potential of the metal particles was not exploited to any significant extent. This was mainly due to weak metal-Al2O3 interfaces, but also because of carbon embrittlement of the metallic particles in which chromium was the major constituent.  相似文献   

10.
Unidirectionally solidified Al2O3/Y3Al5O12 (YAG) or Al2O3/Er3Al5O12 (EAG) eutectic composites, which are named as Melt Growth Composites (MGCs) has recently been fabricated by unidirectional solidification. The MGCs have a new microstructure, in which continuous networks of single-crystal Al2O3 phases and single-crystal oxide compounds (YAG or EAG) interpenetrate without grain boundaries. The MGCs fabricated are thermally stable and has the following properties: 1) the flexural strength at room temperature can be maintained up to 2073 K (just below its melting point), 2) a fracture manner from room temperature to 2073 K is an intergranular fracture different from a transgranular fracture of sintered composite with the same composition, 3) the compressive creep strength at 1873 K and a strain rate of 10–4/sec is 7–13 times higher than that of sintered composites, 4) the mechanism of creep deformation is based on the dislocation creep models completely different from the Nabarro-Herring or Coble creep models of the sintered composites, and 5) it shows neither weight gain nor grain growth, even upon heating at 1973 K in an air atmosphere for 1000 hours. The above superior high-temperature characteristics are caused by such factor as the MGCs having a single-crystal Al2O3/single-cryatal oxide compounds without grain boundaries and colonies, and the formation of the thermodynamically stable and compatible interface without amorphous phase.  相似文献   

11.
Three kinds of A356 based composites reinforced with 3 wt.% Al2O3 (average particle size: 170 μm), 3 wt.% SiC (average particle size: 15 μm), and 3 wt.% of mixed Al2O3–SiC powders (a novel composite with equal weights of reinforcement) were fabricated in this study via a two-step approach. This first process step was semi-solid stir casting, which was followed by rolling as the second process step. Electroless deposition of a copper coating onto the reinforcement was used to improve the wettability of the ceramic particles by the molten A356 alloy. From microstructural characterization, it was found that coarse alumina particles were most effective as obstacles for grain growth during solidification. The rolling process broke the otherwise present fine silicon platelets, which were mostly present around the Al2O3 particles. The rolling process was also found to cause fracture of silicon particles, improve the distribution of fine SiC particles, and eliminate porosity remaining after the first casting process step. Examination of the mechanical properties of the obtained composites revealed that samples which contained a bimodal ceramic reinforecment of fine SiC and coarse Al2O3 particles had the highest strength and hardness.  相似文献   

12.
In the present investigation, the effect of three different stir casting routes on the structure and properties of fine fly ash particles (13 μm average particle size) reinforced Al–7Si–0.35Mg alloy composite is evaluated. Among liquid metal stir casting, compocasting (semi solid processing), modified compocasting and modified compocasting followed by squeeze casting routes evaluated, the latter has resulted in a well-dispersed and relatively agglomerate and porosity free fly ash particle dispersed composites. Interfacial reactions between the fly ash particle and the matrix leading to the formation of MgAl2O4 spinel and iron intermetallics are more in liquid metal stir cast composites than in compocast composites.  相似文献   

13.
Pure Al powders were mixed with a 30 % volume fraction of Al2O3 powders having particle sizes of ~30 nm. The mixed powders were first subjected to ball milling (BM) and thereafter consolidated by high-pressure torsion (HPT) at room temperature under a pressure of 3 GPa for 10 turns. The Al–Al2O3 composite produced by BM and HPT (BM + HPT) had a more uniform dispersion of the nano-sized Al2O3 particles in the Al matrix. Hardness values of the BM + HPT composites were higher than those of the composites without BM. It is shown that the use of BM powders for HPT is more effective in achieving a uniform dispersion of the nano-sized Al2O3 particles and in improving mechanical properties of the Al–Al2O3 nanocomposites.  相似文献   

14.
Aluminium-matrix composites were fabricated by liquid metal infiltration of porous particulate reinforcement preforms, using AlN, SiC and Al2O3 as the particles. The quality of the composites depended on the preform fabrication technology. In this work, this technology was developed for high-volume fraction (up to 75%) particulate preforms, which are more sensitive to the preform fabrication process than lower volume fraction whisker/fibre preforms as their porosity and pore size are much lower. The technology developed used an acid phosphate binder (with P/Al molar ratio=23) in the amount of 0.1 wt% of the preform, in contrast to the much larger binder amount used for whisker preforms. The preforms were made by filtration of a slurry consisting of the reinforcement particles, the binder and carrier (preferably acetone), and subsequent baking (preferably at 200 °C) for the purpose of drying. Baking in air at 500 °C instead of 200 °C caused the AlN preforms to oxidize, thereby decreasing the thermal conductivity of the resulting Al/AlN composites. The reinforcement-binder reactivity was larger for AlN than SiC, but this reactivity did not affect the composite properties due to the small binder amount used. The Al/AlN composites were superior to the Al/SiC composites in the thermal conductivity and tensile ductility. The Al/Al2O3 composites were the poorest due to Al2O3 particle clustering.  相似文献   

15.
Reaction-bonded boron carbide is prepared by pressureless infiltration of boron carbide preforms with molten silicon in a graphite furnace under vacuum. The presence of Al2O3 parts in the heated zone, even though not in contact with the boron carbide preform, causes aluminum to appear in the liquid silicon. The formation of aluminum sub-oxide (Al2O) stands behind the transport of aluminum into the composite. The presence of aluminum in the boron carbide–silicon system accelerates the transformation of the initial boron carbide particles into Bx(C,Si,Al)y and Al1.36B24C4, newly formed carbide phases. It also leads during cooling to the formation of some Si–Al solid solution particles. The effect of Al on the microstructural evolution is well accounted for by the calculated isothermal section of the quaternary Al–B–C–Si phase diagram, according to which the solubility of boron in liquid silicon increases with increasing aluminum content. This feature is a key factor in the evolution of the microstructure of the infiltrated composites.  相似文献   

16.
This paper presents the method for measurement of the adhesion force and fracture strength of the interface between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites. Three samples with the following Cu to Al2O3 ratio (in vol.%) were prepared: 98.0Cu/2.0Al2O3, 95.0Cu/5.0Al2O3 and 90Cu/10Al2O3. Furthermore, microwires which contain a few ceramic particles were produced by means of electro etching. The microwires with clearly exposed interface were tested with use of the microtensile tester. The microwires usually break exactly at the interface between the metal matrix and ceramic particle. The force and the interface area were carefully measured and then the fracture strength of the interface was determined. The strength of the interface between ceramic particle and metal matrix was equal to 59 ± 8 MPa and 59 ± 11 MPa in the case of 2% and 5% Al2O3 to Cu ratio, respectively. On the other hand, it was significantly lower (38 ± 5 MPa) for the wires made of composite with 10% Al2O3.  相似文献   

17.
Aluminium-matrix composites containing AlN, SiC or Al2O3 particles were fabricated by vacuum infiltration of liquid aluminium into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AlN had similar tensile strengths and higher ductility compared to Al/SiC of similar reinforcement volume fractions at room temperature, but exhibited higher tensile strength arid higher ductility at 300–400 °C and at room temperature after heating at 600 °C for 10–20 days. The ductility of Al/AIN increased with increasing temperature from 22–400 °C, while that of Al/SiC did not change with temperature. At 400 °C, Al/AlN exhibited mainly ductile fracture, whereas Al/SiC exhibited brittle fracture due to particle decohesion. Moreover, Al/AlN exhibited greater resistance to compressive deformation at 525 °C than Al/SiC. The superior high-temperature resistance of Al/AlN is attributed to the lack of a reaction between aluminium and AlN, in contrast to the reaction between aluminium and SiC in Al/SiC. By using Al-20Si-5Mg rather than aluminium as the matrix, the reaction between aluminium and SiC was arrested, resulting in no change in the tensile properties after heating at 500 °C for 20 days. However, the use of Al-20Si-5Mg instead of aluminium as the matrix caused the strength and ductility to decrease by 30% and 70%, respectively, due to the brittleness of Al-20Si-5Mg. Therefore, the use of AIN instead of SiC as the reinforcement is a better way to avoid the filler-matrix reaction. Al/Al2O3 had lower room-temperature tensile strength and ductility compared to both Al/AlN and Al/SiC of similar reinforcement volume fractions, both before and after heating at 600 °C for 10–20 days. Al/Al2O3 exhibited brittle fracture even at room temperature, due to incomplete infiltration resulting from Al2O3 particle clustering.  相似文献   

18.
The effect of titanium additions on the interface and mechanical properties of infiltrated Cu8 wt%Al–Al2O3 composites containing 57 ± 2 vol% ceramic are investigated, exploring two different Al2O3 particle types and four different Ti concentrations (0, 0.2, 1, 2 wt%Ti). Addition of 0.2 wt%Ti leads to the development of a thin (5–10 nm) layer enriched in Ti at the interface between Cu alloy and Al2O3 particles; this Ti concentration produces the best mechanical properties. With higher Ti-contents Ti3(Cu, Al)3O appears; this decreases both the interface and composite strength. Composites reinforced with vapor-grown polygonal alumina particles show superior mechanical properties compared to those reinforced by angular comminuted alumina particles, as has been previously documented for aluminum-based matrices. Micromechanical analysis shows that damage accumulation is more extensive, as is matrix hardening by dislocation emission during composite cooldown, in the present Cu8 wt%Al matrix composites compared with similarly reinforced and processed Al-matrix composites.  相似文献   

19.
In order to clarify the effect of Al2O3 particle size on the arc erosion behavior of the ceramic-reinforced Al2O3/Cu composite, Al2O3/Cu composites with different sizes of Al2O3 particles were prepared by powder metallurgy, the effect of Al2O3 particle size on the characteristics of arc motion was studied, and the mechanism of arc erosion of Al2O3/Cu composites was discussed as well. The results show that with decrease in the size of Al2O3 particles, the erosion area increases significantly and the erosion pits become shallower. The vacuum breakdown is preferred to appear in the area between Al2O3 particle and the copper matrix. Based on the experimental results and theoretical analysis, a particle partition arc model is proposed.  相似文献   

20.
Sintering behaviour and microstructure of Al2O3 ceramics without additives and with 0.02–0.25 mol% CaO + SiO2 (CaO/SiO2 = 1) were investigated. When Al2O3 bodies were sintered at 1400 °C, the sinterability and the grain size decreased as the content of CaO + Si2 increased. When Al2O3 ceramics with 0.05 – 0.25 mol% CaO + SiO2 were sintered at higher sintering temperature, both CaO and SiO2 reacted with Al2O3 to produce the liquid phase along grain boundaries, and exaggerated platelet Al2O3 grains, with an aspect ratio of about 4.5, were formed. Because the size of platelet grains decreased as the content of CaO + SiO2 increased, the distribution of either SiO2 particles or this intergranular phase of CaO – Al2O3 – SiO2 might control the microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号