首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Magnesium is a crucial mineral, involved in many important physiological processes. Magnesium plays a role of maintaining myocardial electrical stability in hemodialysis patients. Intradialytic hypotension is a common complication of dialysis and it is more common with acetate dialysate. The significance of the intradialytic changes of magnesium and their relation to parathyroid hormone (PTH) level and calcium changes during dialysis, and their relation to hypotensive episodes during dialysis are interesting. The aim of this work is to investigate the intradialytic changes of serum magnesium in chronic hemodialysis patients with different hemodialysis modalities and the relation to other electrolytes and to PTH, and also the relation to intradialytic hypotension. The present study was conducted on 20 chronic renal failure patients. All patients were on regular hemodialysis thrice weekly 4 hr each using acetate dialysate (group I). To study the effect of an acetate-based dialysate vs. a bicarbonate-based dialysate on acute changes of magnesium, calcium, phosphorus, and PTH during a hemodialysis session, the same patients were shifted to bicarbonate dialysis (group II). All patients were subjected to full history and clinical examination, predialysis laboratory assessment of blood urea nitrogen (BUN), serum creatinine, albumin, and hemoglobin, serial assessment of magnesium, calcium, phosphorus, and parathyroid hormone at the start of the hemodialysis session, 2 hr later, and at the end of the session, blood pH, and electrocardiogram (ECG) presession and postsession. All patients were urged to fix their dry weight, diet, and current medications. None of the patients had diabetes, neoplasia, liver disease, or cachexia, nor had they been recently on magnesium-containing drugs or previously parathyroidectomized. Hemodialysis sessions were performed by volumetric dialysis machines using the same electrolyte composition. Magnesium level significantly increased in the bicarbonate group at the end of dialysis (0 hr: 2.73+/-0.87, 2 hr: 3.21+/-1.1, and at 4 hr: 5.73+/-1.45 mg/dL, p value <0.01), while it significantly decreased in the acetate group (0 hr: 3.00+/-0.58, 2 hr: 2.26+/-0.39, 4 hr: 1.97+/-0.33 mg/dL, p value <0.01). Calcium level significantly increased in the bicarbonate group (p=0.024) but not in the acetate group. Phosphorus level significantly decreased in both acetate and bicarbonate groups. PTH level did not significantly change in either group, p value > or =0.05. Blood pH significantly increased, changing from acidic to alkaline pH, with both modalities of hemodialysis. ECG showed no significant changes during sessions with either type of dialysate. Hypotension was significantly higher in group I compared with group II (p=0.01), and this hypotension was positively correlated with a decrease in serum magnesium level in group I. Intradialytic changes in serum magnesium have no correlation with intradialytic changes in serum calcium or with PTH level. However, it was significantly correlated with hypotension during the dialysis session, especially with acetate dialysate. Further investigations are needed to determine whether or not this is true in patients using bicarbonate dialysis.  相似文献   

2.
Systemic anticoagulation with unfractionated heparin is commonly used in maintenance hemodialysis (HD), but it increases the risk of bleeding complications. We investigated whether the use of citrate‐enriched bicarbonate based dialysate (CD) would reduce systemic anticoagulation without compromising the efficacy of reprocessed dialyzers. This is a crossover study in which half of a total of 30 patients initially underwent HD with acetate‐enriched bicarbonate based dialysate and a standard heparin dose of ~100 IU/kg (Treatment A), whereas the remaining patients were treated with CD and a 30% reduced heparin dose (Treatment B). After 12 consecutive HD sessions in each treatment, the dialysate and heparin doses were reversed, then followed for another period of 12 HD sessions. The two treatment phases were split by a washout period of six HD sessions using acetate‐enriched bicarbonate based dialysate and standard heparin dose. Systemic anticoagulation was higher in Treatment A. The activated partial thromboplastin time at the end of HD session was 68 ± 36 seconds in Treatment A and 47 ± 16 seconds in Treatment B (P = 0.005). Sixty‐eight percent of the dialyzers remained adequate until the 12th use in Treatment A and 61% did so in Treatment B (P = 0.63). Patients had three and 24 cramps episodes during Treatment A and B, respectively (P < 0.001). Nine and 26 symptomatic intradialytic hypotension episodes were seen in Treatment A and B, respectively, (P = 0.003). In conclusion, the use of CD had a favorable effect on anticoagulation in the extracorporeal circuit in patients on maintenance HD, but it was also associated with more hypotension and cramps.  相似文献   

3.
Introduction: The dialysate bicarbonate (DB) influences the acid‐base balance in dialysis patients. Very low and high serum bicarbonate (SB) have been related with a higher mortality. Acid‐base balance also has been associated with hemodynamic effects in these patients. The trial aim was to compare the effect of DB concentration variation on SB levels in maintenance hemodiafiltration (HDF) patients and the effect on intradialytic hypotension and interdialytic weight gain. Methods: A prospective study, with 9 months of follow‐up, involving 93 patients, divided in two groups: group 1 and group 2 with a DB of 34 mmol/L and 30 mmol/L, respectively, with monitoring of pre and post HDF SB, intradialytic hypotension, and interdialytic weight gain. Findings: Pre dialysis SB was higher in group 1: median concentration of 22.7 mmol/L vs. 21.1 mmol/L (P < 0.001). Post dialysis SB levels were higher in group 1: median concentration of 28.0 mmol/L vs. 25.3 mmol/L (P < 0.001). Post dialysis SB in alkalotic range was only detected in group 1 (51.2% of the patients). No significant differences were detected in intradialytic hypotension rate [28.0 vs. 27.4 episodes per 1000 sessions in group 1 and 2, respectively, (P = 0.906)] or in average interdialytic weight gain [2.9% vs. 3.0% in group 1 and 2, respectively, (P = 0.710)]. Discussion: DB of 30 mmol/L appears to be associated with SB levels closer to physiological levels than 34 mmol/L. The bicarbonate dialysate, in the tested concentrations, did not appear to have a significant impact on intradialytic hypotension and interdialytic weight gain in maintenance HDF patients.  相似文献   

4.
Introduction Citrate containing dialysate has a calcium‐binding anticoagulant effect compared to standard acetic acid containing dialysate. We performed a randomized, double‐blind, crossover trial in maintenance HD patients to determine if citrate dialysate (“citrate”) safely allows for a lower cumulative heparin dose (“heparin dose”). Methods Intradialytic heparin was adjusted to the minimum during a 2‐week run‐in phase. Patients remaining on heparin at the end of the run‐in phase were then randomized to two weeks of HD with acetate dialysate (“acetate”) followed by two weeks of citrate (sequence 1) or two weeks of citrate followed by two weeks of acetate (sequence 2). We estimated a minimum of 14 patients are required to show a 30% reduction in heparin dose per HD session with citrate compared with acetate. Twenty‐five patients entered the run‐in phase, 20 were randomized, and 19 completed the study. Findings The mean heparin dose was reduced by 19% (656 units, 95% CI ?174 to ?1139 units, P = 0.011) in the acetate group, and 30% (1046 units 95% CI ?498 to 1594 units, P < 0.001) in the citrate group. There was no difference in the mean heparin dose reduction between the two dialysates (P > 0.05). The intradialytic ionized calcium in the citrate group was lowered by 0.10 mmol/L (95% CI 0.07 to 0.14 mmol/L, P < 0.001), and remained unchanged in the acetate group. Discussion Although citrate is a safe alternative to acetate, it does not result in additional heparin dose reduction.  相似文献   

5.
Patients on chronic hemodialysis often portray high serum [K+]. Although dietary excesses are evident in many cases, in others, the cause of hyperkalemia cannot be identified. In such cases, hyperkalemia could result from decreased potassium removal during dialysis. This situation could occur if alkalinization of body fluids during dialysis would drive potassium into the cell, thus decreasing the potassium gradient across the dialysis membrane. In 35 chronic hemodialysis patients, we compared two dialysis sessions performed 7 days apart. Bicarbonate or acetate as dialysate buffers were randomly assigned for the first dialysis. The buffer was switched for the second dialysis. Serum [K+], [HCO3-], and pH were measured in samples drawn before dialysis; 60, 120, 180, and 240 min into dialysis; and 60 and 90 min after dialysis. The potassium removed was measured in the dialysate. During the first 2 hr, serum [K+] decreased equally with both types of dialysates but declined more during the last 2 hr with bicarbonate dialysis. After dialysis, the serum [K+] rebounded higher with bicarbonate bringing the serum [K+] up to par with acetate. The lower serum [K+] through the second half of bicarbonate dialysis did not impair potassium removal (295.9 +/- 9.6 mmol with bicarbonate and 299.0 +/- 14.4 mmol with acetate). The measured serum K+ concentrations correlated with serum [HCO3-] and blood pH during bicarbonate dialysis but not during acetate dialysis. Alkalinization induced by bicarbonate administration may cause redistribution of K during bicarbonate dialysis but this does not impair its removal. The more marked lowering of potassium during bicarbonate dialysis occurs late in dialysis, when exchange is negligible because of a low gradient.  相似文献   

6.
Intradialytic hypotension is the most common complication associated with hemodialysis. We describe a case of severe intradialytic hypotension during routine chronic dialysis, the presenting symptom of hypocalcemia due to a procedural error involving a zero calcium liquid acid dialysate concentrate. Although human factors were the root cause of this event, we discuss physical and procedural controls that may help to minimize the risk of human error. Citrate anticoagulation for renal replacement therapy is increasingly used, particularly in acute kidney injury. Thus, zero calcium liquid acid dialysate is more likely to be stocked by dialysis units that serve both inpatients and outpatients. Providers in such units must maintain the utmost vigilance for human error involving these concentrates, as it is likely that the reported literature does not accurately reflect the frequency of such adverse events occurring during dialysis. Structured and universal reporting of errors to allow systematic analysis of hemodialysis device related hazards would allow identification of engineering controls that could prevent such potentially catastrophic clinical errors.  相似文献   

7.
8.
9.
Intradialytic hypotension remains the most frequent complication associated with routine outpatient hemodialysis. Although increasing dialysis frequency and also lengthening dialysis session duration can reduce the risk of intradialytic hypotension, in practice, these options are limited to a small minority of dialysis patients. To help reduce intradialytic hypotension, a number of technological developments have been incorporated into the hemodialysis machine, based around relative blood volume monitoring, an indirect assessment of plasma volume. Further developments based on so called "fuzzy" logic feedback systems designed to adjust either or both the ultrafiltration rate and dialyzate sodium concentration according to relative changes in plasma volume. In addition, cooling and dissipation of the heat generated during dialysis also reduces the risk of intradialytic hypotension, and this can be regulated by cooling of the dialyzate using thermal control systems. In addition, convective therapies, such as online hemodialfiltration, have also been reported to reduce the frequency of intradialytic hypotension; whether this effect is simply due to increased cooling remains to be determined. Although all these developments have been reported to reduce the frequency of serious intradialytic hypotensive episodes, they have not been able to totally abolish hypotension, as they can not alone compensate for excessive weight gains and consequent excessive ultrafiltration requirements. Thus, in addition to the advances in hemodialysis machine technology designed to reduce intradialytic hypotension, attention also needs to be focused on reducing interdialytic weight gains, so reducing ultrafiltration requirement.  相似文献   

10.
Liver transplantation for acutely ill patients with fulminant liver failure carries high intraoperative and immediate postoperative risks. These are increased with the presence of concomitant acute kidney injury (AKI) and intraoperative dialysis is sometimes required to allow the transplant to proceed. The derangements in the procoagulant and anticoagulant pathways during fulminant liver failure can lead to difficulties with anticoagulation during dialysis, especially when continued in the operating room. Systemic anticoagulation is unsafe and regional citrate anticoagulation in the absence of a functional liver carries the risk of citrate toxicity. Citrate dialysate, a new dialysate with citric acid can be used for anticoagulation in patients who cannot tolerate heparin or regional citrate. We report a case of a 40-year-old female with acetaminophen-induced fulminant liver failure with associated AKI who underwent intraoperative dialytic support during liver transplantation anticoagulated with citrate dialysate during the entire procedure. The patient tolerated the procedure well without any signs of citrate toxicity and maintained adequate anticoagulation for patency of the dialysis circuit. Citrate dialysate is a safe alternative for intradialytic support of liver transplantation in fulminant liver failure.  相似文献   

11.
镁合金微弧氧化陶瓷膜的组织结构及耐腐蚀性能   总被引:1,自引:0,他引:1  
为了提高镁合金的耐蚀性,采用氢氧化钠-六偏磷酸钠-醋酸钙电解液,利用微弧氧化技术在AZ91D镁合金表面原位生长含有钙、磷的陶瓷膜,研究了醋酸钙浓度对陶瓷膜的厚度、表面粗糙度、形貌、成分、相组成及其在模拟体液中耐蚀性的影响。结果表明:陶瓷膜主要为MgO相,且含有Ca和P;膜层表面具有多孔结构;增加电解液中醋酸钙浓度,膜层变厚,粗糙度先增大后减小,Ca含量增多;陶瓷膜使镁合金的耐蚀性提高;电解液加入醋酸钙后,制得的膜层耐蚀性下降,含0.4 g/L醋酸钙的电解液制得的膜层的耐蚀性在含Ca膜层中最好。  相似文献   

12.
13.
Severe hyperparathyroidism is a challenge on hemodialysis. The definition of dialysate calcium (Ca) is a pending issue with renewed importance in cases of individualized dialysis schedules and of portable home dialysis machines with low‐flow dialysate. Direct measurement of calcium mass transfer is complex and is imprecisely reflected by differences in start‐to‐end of dialysis Ca levels. The study was performed in a dialysis unit dedicated to home hemodialysis and to critical patients with wide use of daily and tailored schedules. The Ca‐phosphate (P)‐parathyroid hormone (PTH) profile includes creatinine, urea, total and ionized Ca, albumin, sodium, potassium, P, PTH levels at start, mid, and end of dialysis. “Severe” secondary hyperparathyroidism was defined as PTH > 300 pg/mL for ≥3 months. Four schedules were tested: conventional dialysis (polysulfone dialyzer 1.8–2.1 m2), with dialysate Ca 1.5 or 1.75 mmol/L, NxStage (Ca 1.5 mmol/L), and NxStage plus intradialytic Ca infusion. Dosages of vitamin D, calcium, phosphate binders, and Ca mimetic agents were adjusted monthly. Eighty Ca‐P‐PTH profiles were collected in 12 patients. Serum phosphate was efficiently reduced by all techniques. No differences in start‐to‐end PTH and Ca levels on dialysis were observed in patients with PTH levels < 300 pg/mL. Conversely, Ca levels in “severe” secondary hyperparathyroid patients significantly increased and PTH decreased during dialysis on all schedules except on Nxstage (P < 0.05). Our data support the need for tailored dialysate Ca content, even on “low‐flow” daily home dialysis, in “severe” secondary hyperparathyroid patients in order to increase the therapeutic potentials of the new dialysis techniques.  相似文献   

14.
Optical techniques may potentially be used for noninvasive glucose sensing. We investigated the application of phase-sensitive optical low-coherence reflectometry (PS-OLCR) to the measurement of analyte concentrations. The dependence of the PS-OLCR signal on the concentration of various analytes, including aqueous solutions of glucose, calcium chloride, magnesium chloride, sodium chloride, potassium chloride, potassium bicarbonate, urea, bovine serum albumin, and bovine globulin, were determined in clear and turbid media. Obtained results demonstrated (1) a high degree of sensitivity and accuracy of the phase measurements of analyte concentrations with PS-OLCR; (2) a concentration-dependent change in the phase-shift for glucose that is significantly greater than that of other analytes sampled over the same physiological range; and (3) a high submillimolar sensitivity of PS-OLCR for the measurement of glucose concentration. Further exploration of the application of PS-OLCR to the noninvasive, sensitive, and specific monitoring of glucose concentration seems warranted.  相似文献   

15.
16.
为了掌握光亮剂对化学镀Ni-P层质量的影响,以次亚磷酸钠作为还原剂在pH=4~6的条件下对涤纶布进行了化学镀镍,研究表面活性剂十二烷基硫酸钠对涤纶白布Ni-P化学镀层质量的影响.结果表明:本工艺可以获得表面致密、光亮度较高、具有一定厚度的微黄的Ni-P镀层,获得高质量镀层的优化工艺为:11 g/L硫酸镍,15 g/L次亚磷酸钠,10 g/L柠檬酸钾,5 g/L乙酸钠,0.01 g/L十二烷基硫酸钠,温度75℃,时间25 min,pH值4~6,均匀搅拌.  相似文献   

17.
The fluoride concentration in underground water was determined in four villages of Jind district of Haryana state (India) where it is the only source of drinking water. Various other water quality parameters such as pH, electrical conductivity, total dissolved salts, total hardness, total alkalinity as well as sodium, potassium, calcium, magnesium, carbonate, bicarbonate, chloride and sulfate concentrations were also measured. A systematic calculation of correlation coefficients among different physico-chemical parameters was performed. The analytical results indicated considerable variations among the analyzed samples with respect to their chemical composition. Majority of the samples do not comply with Indian as well as WHO standards for most of the water quality parameters measured. The fluoride concentration in the underground water of these villages varied from 0.3 to 6.9 mg/l, causing dental fluorosis among people especially children of these villages. Overall water quality was found unsatisfactory for drinking purposes without any prior treatment except at eight locations out of 60.  相似文献   

18.
Sodium balance across a hemodialysis treatment influences interdialytic weight gain (IDWG), pre‐dialysis blood pressure, and the occurrence of intradialytic hypotension, which associate with patient morbidity and mortality. In thrice weekly conventional hemodialysis patients, the dialysate sodium minus pre‐dialysis plasma sodium concentration (δDPNa+) and the post‐dialysis minus pre‐dialysis plasma sodium (δPNa+) are surrogates of sodium balance, and are associated with both cardiovascular and all‐cause mortality. However, whether δDPNa+ or δPNa+ better predicts clinical outcomes in quotidian dialysis is unknown. We performed a retrospective analysis of clinical and demographic data from the Southwestern Ontario Regional Home Hemodialysis program, of all patients since 1985. In frequent nocturnal hemodialysis, δPNa+ was superior to δDPNa+ in predicting IDWG (R2 = 0.223 vs. 0.020, P = 0.002 vs. 0.76), intradialytic change in systolic (R2 = 0.100 vs. 0.002, P = 0.02 vs. 0.16) and diastolic (R2 = 0.066 vs. 0.019, P = 0.02 vs. 0.06) blood pressure, and ultrafiltration rate (R2 = 0.296 vs. 0.036, P = 0.001 vs. 0.52). In short hours daily hemodialysis, δDPNa+ was better than δPNa+ in predicting intradialytic change in diastolic blood pressure (R2 = 0.101 vs. 0.003, P = 0.02 vs. 0.13). However, δPNa+ was better than δDPNa+ in predicting IDWG (R2 = 0.105 vs. 0.019, P = 0.04 vs. 0.68) and pre‐dialysis systolic blood pressure (R2 = 0.103 vs. 0.007, P = 0.02 vs. 0.82). We also found that the intradialytic blood pressure fall was greater in frequent nocturnal hemodialysis patients than in short hours daily patients, when exposed to a dialysate to plasma sodium gradient. These results provide a basis for design of prospective trials in quotidian dialysis modalities, to determine the effect of sodium balance on cardiovascular outcome.  相似文献   

19.
Sodium and ultrafiltration profiling are method of dialysis in which dialysate sodium concentration and ultrafiltration rate are altered during the course of the dialysis session. Sodium and ultrafiltration profiling have been used, commonly simultaneously, to improve hemodynamic stability during hemodialysis. Sodium profiling is particularly effective in decreasing the incidence of intradialytic hypotension, while ultrafiltration profiling is suggested to decrease subclinical repeated end organ ischemia during dialysis. However, complications such as increased interdialytic weight gain and thirst due to sodium excess have prevented widespread use of sodium profiling. Evidence suggest that different sodium profiling techniques may lead to different clinical results, and preferring sodium balance neutral sodium profiling may mitigate adverse effects related to sodium overload. However, evidence is lacking on the long-term clinical outcomes of different sodium profiling methods. Optimal method of sodium profiling as well as the utility of sodium/ultrafiltration profiling in routine practice await further clinical investigation.  相似文献   

20.
A fast and reproducible reverse-phase high-performance liquid chromatography (HPLC) assay method has been developed for the simultaneous quantitation of omeprazole, lansoprazole, and pantoprazole. The three compounds were monitored at 280 nm using Zorbax Eclipse XDB C8 (5 microns, 150 cm x 4.6 mm i.d.) and a mobile phase consisting of 700:300 phosphate buffer:acetonitrile with the pH adjusted to 7.0 with phosphoric acid. The method was used to study the effect of pH and various salts on the stability of the three compounds. The pH rate profile curve showed that pantoprazole was the most stable compound and lansoprazole the least stable. The stabilities of the compounds in salt solutions were found to be in the following order: phosphate buffer < trisodium citrate < citrate buffer < or = acetate buffer < citric acid < or = monosodium citrate < or = calcium carbonate < sodium bicarbonate < sodium chloride < water. The rate of degradation had a direct relationship with the H+ and salt concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号