首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogels based on N‐acryloyl‐N′‐methylpiperazine (AcrNMP) swelled extensively in solutions of low pH due to the protonation of the tertiary amine. The water transport in the gels under an acidic condition was non‐Fickian and nearly Fickian in neutral pH with the collective diffusion coefficients determined as 2.08 × 10−7 and 5.00 × 10−7 cm−2 s−1, respectively. These gels demonstrated good metal‐uptake behavior with various divalent metal ions, in particular, copper and nickel, with the uptake capacity increased with increasing pH. The swelling ratio of the gel in the presence of metal ions decreased with increasing metal ion uptake. The results suggest that high metal ion uptake can lead to physical crosslinking arising from the interchain metal complex formation. The metal‐loaded gels could be stripped easily with 1M H2SO4 without any loss in their uptake capacity. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 268–273, 2001  相似文献   

2.
Novel single‐ion conducting polymer electrolytes based on electrospun poly(lithium 2‐acrylamido‐2‐methylpropanesulfonic acid) (PAMPSLi) membranes were prepared for lithium‐ion batteries. The preparation started with the synthesis of polymeric lithium salt PAMPSLi by free‐radical polymerization of 2‐acrylamido‐2‐methylpropanesulfonic acid, followed by ion‐exchange of H+ with Li+. Then, the electrospun PAMPSLi membranes were prepared by electrospinning technology, and the resultant PAMPSLi fiber‐based polymer electrolytes were fabricated by immersing the electrospun membranes into a plasticizer composed of ethylene carbonate and dimethyl carbonate. PAMPSLi exhibited high thermal stability and its decomposition did not occur until 304°C. The specific surface area of the electrospun PAMPSLi membranes was raised from 9.9 m2/g to 19.5 m2/g by varying the solvent composition of polymer solutions. The ionic conductivity of the resultant PAMPSLi fiber‐based polymer electrolytes at 20°C increased from 0.815 × 10?5 S/cm to 2.12 × 10?5 S/cm with the increase of the specific surface area. The polymer electrolytes exhibited good dimensional stability and electrochemical stability up to 4.4 V vs. Li+/Li. These results show that the PAMPSLi fiber‐based polymer electrolytes are promising materials for lithium‐ion batteries. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Energetic tetrazine‐1,3‐dioxide, 5,7‐dinitrobenzo‐1,2,3,4‐tetrazine‐1,3‐dioxide ( DNBTDO ), was synthesized in 45 % yield. DNBTDO was characterized as an energetic material in terms of performance (Vdet 8411 m s−1; pC J 3.3×1010 Pa at a density of 1.868 g cm−3), mechanical sensitivity (impact and friction as a function of grain size), and thermal stability (Tdec 204 °C). DNBTDO exhibits a sensitivity slightly higher than that of RDX , and a performance slightly lower (96 % of RDX ).  相似文献   

4.
Two novel side‐chain polymeric metal complexes (PF1 and PF2) containing 8‐hydroxyquinoline and fluorene units with Zn(II) and Cd(II) having donor‐acceptor π‐conjugated structure have been synthesized and characterized using Fourier transform infrared, 1H NMR, UV‐visible and photoluminescence spectroscopies, thermogravimetric analysis, differential scanning calorimetry, elemental analysis and cyclic voltammetry. Dye‐sensitized solar cells (DSSCs) based on PF1 and PF2 as the dye sensitizers exhibit good device performance with solar‐to‐electricity conversion efficiency up to 0.32% (Jsc = 0.83 mA cm?2, Voc = 0.62 mV and FF = 0.62) and 0.24% (Jsc = 0.69 mA cm?2, Voc = 0.59 mV and FF = 0.60), respectively, under simulated AM 1.5 G solar irradiation (100 mW cm?2). The data show that these novel polymeric metal complexes are suitable for DSSCs. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
Novel polyesters, poly[(ε‐caprolactone)‐co‐(N‐trityl‐L ‐serine‐β‐lactone)]s, were prepared by copolymerizing ε‐caprolactone (CL) with N‐trityl‐L ‐serine‐β‐lactone (TSL) using ZnEt2 as the catalyst. The number‐average molecular weights were determined which ranged from 2.7 × 104 to 4.9 × 104 Da with dispersity values ranging from 1.6 to 1.8. The structures of the copolymers were investigated by means of 1H NMR, 13C NMR and infrared spectroscopies, thermogravimetric analysis and differential scanning calorimetry. The results indicated that CL and TSL monomer units were randomly distributed within the copolymer backbone structures and the ratios of TSL to CL in the copolymers were close to those in the feeds. After removal of the trityl group under mild condition, a new polyester with side amino groups provided by serine units was obtained. L929 cell culturing test indicated good biocompatibility of the polyester with or without protective groups. © 2012 Society of Chemical Industry  相似文献   

6.
In this article, graft copolymerization of N‐vinyl‐2‐pyrrolidone onto xanthan gum initiated by potassium peroxydiphosphate/Ag+ system in an aqueous medium has been studied under oxygen free nitrogen atmosphere. Grafting ratio, grafting efficiency, and add on increase on increasing the concentration of potassium peroxydiphosphate (2.0 × 10?3 to 12 × 10?3 mol dm?3), Ag+(0.4 × 10?3 to 2.8 × 10?3 mol dm?3), and hydrogen ion concentration from 2 × 10?3 to 14.0 × 10?3 mol dm?3. Maximum grafting has been obtained when xanthan gum and monomer concentration were 0.4 g dm?3 and 16 × 10?2 mol dm?3, respectively, at 35°C and 120 min. Water swelling capacity, swelling ratio, metal ion uptake, and metal retention capacity have also been studied, and it has been found that graft copolymer shows enhancement in these properties than pure xanthan gum. The graft copolymer has been characterized by FTIR and thermal analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
A mild and reproducible method has been developed for the entrapment of α‐chymotrypsin into a crosslinked copolymer. A porous copolymer was synthesized at 293 K by solution copolymerization of acrylamide and 2‐hydroxyethyl methacrylate. α‐Chymotrypsin was entrapped during copolymerization at different polymerization stages. The effect of crosslinking on enzyme loading and retention of its activity was examined. Copolymer with 2% crosslinking could entrap >90% of the enzyme. The activity of free and immobilized α‐chymotrypsin was determined by using N‐benzoyl‐L ‐tyrosine ethyl ester and casein as low and high molecular weight substrates respectively. Storage as well as thermal stability of the immobilized enzyme was superior to that of the free one. Effect of calcium and heavy metal ions was studied on immobilized enzyme activity. The immobilized enzyme showed little variation in activity with pH and retained 50% activity after nine cycles. The Michaelis constant Km of the free and immobilized enzyme was estimated to be 2.7 and 4.2 × 10−3 mM, respectively, indicating no conformational changes during entrapment. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2996–3002, 2000  相似文献   

8.
Two new bisfluoro monomers 9,10‐bis‐(4‐fluoro‐3‐trifluoromethylphenyl) anthracene and 2,7‐bis‐(4‐fluoro‐3‐trifluoromethylphenyl) fluorene have been synthesized by the cross‐coupling reaction of 2‐fluoro‐3‐trifluoromethyl phenyl boronic acid with 9,10‐dibromo anthracene and 2,7‐dibromo fluorine, respectively. These two bisfluoro compounds were used to prepare several poly(arylene ether)s by aromatic nucleophilic displacement of fluorine with various bisphenols; such as bisphenol‐A, bisphenol‐6F, bishydroxy biphenyl, and 9,9‐bis‐(4‐hydroxyphenyl)‐fluorene. The products obtained by displacement of the fluorine atoms exhibits weight‐average molar masses up to 1.5 ×105 g mol?1 and number average molecular weight up to 6.8 × 104 g mol?1 in GPC. These poly(arylene ether)s show very high thermal stability even up to 490°C for 5% weight loss occurring at this temperature in TGA in synthetic air and showed glass transition temperature observed up to 310°C. All the polymers are soluble in a wide range of organic solvents, e.g., CHCl3, THF, NMP, and DMF. Films cast from DMF solution are brittle in nature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
Invertase was immobilized onto the dimer acid‐co‐alkyl polyamine after activation with 1,2‐diamine ethane and 1,3‐diamine propane. The effects of pH, temperature, substrate concentration, and storage stability on free and immobilized invertase were investigated. Kinetic parameters were calculated as 18.2 mM for Km and 6.43 × 10?5 mol dm?3 min?1 for Vmax of free enzyme and in the range of 23.8–35.3 mM for Km and 7.97–11.71 × 10?5 mol dm?3 min?1 for Vmax of immobilized enzyme. After storage at 4°C for 1 month, the enzyme activities were 21.0 and 60.0–70.0% of the initial activity for free and immobilized enzyme, respectively. The optimum pH values for free and immobilized enzymes were determined as 4.5. The optimum temperatures for free and immobilized enzymes were 45 and 50°C, respectively. After using immobilized enzyme in 3 days for 43 times, it showed 76–80% of its original activity. As a result of immobilization, thermal and storage stabilities were increased. The aim of this study was to increase the storage stability and reuse number of the immobilized enzyme and also to compare this immobilization method with others with respect to storage stability and reuse number. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1526–1530, 2004  相似文献   

10.
Two oxetane‐derived monomers 3‐(2‐cyanoethoxy)methyl‐ and 3‐(methoxy(triethylenoxy)) methyl‐3′‐methyloxetane were prepared from the reaction of 3‐methyl‐3′‐hydroxymethyloxetane with acrylonitrile and triethylene glycol monomethyl ether, respectively. Their homo‐ and copolyethers were synthesized with BF3· Et2O/1,4‐butanediol and trifluoromethane sulfonic acid as initiator through cationic ring‐opening polymerization. The structure of the polymers was characterized by FTIR and1H NMR. The ratio of two repeating units incorporated into the copolymers is well consistent with the feed ratio. Regarding glass transition temperature (Tg), the DSC data imply that the resulting copolymers have a lower Tg than pure poly(ethylene oxide). Moreover, the TGA measurements reveal that they possess in general a high heat decomposition temperature. The ion conductivity of a sample (P‐AN 20) is 1.07 × 10?5 S cm?1 at room temperature and 2.79 × 10?4 S cm?1 at 80 °C, thus presenting the potential to meet the practical requirement of lithium ion batteries for polymer electrolytes. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
Room‐temperature ionic liquids (ILs), including 1‐butyl‐3‐methylimidazolium hexafluorophosphate, [bmim+][PF6?], were investigated as replacements for volatile organic compounds in the free‐radical solution polymerization of poly(methyl methacrylate) (PMMA). The latter was synthesized in benzene and [bmim+][PF6?] at 70 °C via a free‐radical process and the degree and rate of polymerization were compared based on the solvent used. The degree of polymerization was found to be five times higher in [bmim+][PF6?] than in benzene, while the rate of reaction was approximately four times faster in [bmim+][PF6?]. The results indicate the potential for using ILs to produce high‐molecular‐weight polymers and block structures based on the increased free‐radical stability in ILs. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

13.
Network formation was monitored by shear storage modulus (G′) during free radical crosslinking polymerization to investigate the effects of pH and ethylenediaminetetraacetic acid (EDTA; a complex agent). Three types of acrylic monomers, acrylic acid (AAc), 2‐acrylamidoglycolic acid (AmGc), and 2‐acrylamido‐2‐methyl propanesulfonic acid (AmPS), were polymerized in the presence of a crosslinking agent. The ratio of crosslinking agent (methylene bis‐acrylamide; MBAAm) to monomer was varied as: 0.583 × 10?3, 1.169 × 10?3, 1.753 × 10?3, and 2.338 × 10?3. G′ of the hydrogel in crosslinking polymerizations of AAc and AmPS was effectively increased by addition of EDTA, which was not the case for the crosslinking polymerization of AmGc. The order of magnitude of G′ differed based on the acidity of monomer. The maximum values of G′ in crosslinking polymerizations of AAc, AmGc, and AmPS were ~20,000 Pa, 6000 Pa, and 400 Pa, respectively. G′ varied linearly with the molecular weight between crosslinks (Mwc). pH and EDTA‐complex affected the rate of intramolecular propagation during crosslinking polymerization. Our results indicated that G′ was primarily affected by the following factors in the order: (1) acidity of monomer, (2) Mwc, and (3) physical interactions induced by pH and EDTA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41026.  相似文献   

14.
To develop conjugated polymers with low bandgap, deep HOMO level, and good solubility, a new conjugated alternating copolymer PC‐DODTBT based on N‐9′‐heptadecanyl‐2,7‐carbazole and 5, 6‐bis(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzothiadiazole was synthesized by Suzuki cross‐coupling polymerization reaction. The polymer reveals excellent solubility and thermal stability with the decomposition temperature (5% weight loss) of 327°C. The HOMO level of PC‐DODTBT is ‐5.11 eV, indicating that the polymer has relatively deep HOMO level. The hole mobility of PC‐DODTBT as deduced from SCLC method was found to be 2.03 × 10?4 cm2/Versus Polymer solar cells (PSCs) based on the blends of PC‐DODTBT and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) with a weight ratio of 1:2.5 were fabricated. Under AM 1.5 (AM, air mass), 100 mW/cm?2 illumination, the devices were found to exhibit an open‐circuit voltage (Voc) of 0.73 V, short‐circuit current density (Jsc) of 5.63 mA/cm?2, and a power conversion efficiency (PCE) of 1.44%. This photovoltaic performance indicates that the copolymer is promising for polymer solar cells applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The model enzyme β‐galactosidase was entrapped in chitosan gel beads and tested for hydrolytic activity and its potential for application in a packed‐bed reactor. The chitosan beads had an enzyme entrapment efficiency of 59% and retained 56% of the enzyme activity of the free enzyme. The Michaelis constant (Km) was 0.0086 and 0.011 μmol/mL for the free and immobilized enzymes, respectively. The maximum velocity of the reaction (Vmax) was 285.7 and 55.25 μmol mL?1 min?1 for the free and immobilized enzymes, respectively. In pH stability tests, the immobilized enzyme exhibited a greater range of pH stability and shifted to include a more acidic pH optimum, compared to that of the free enzyme. A 2.54 × 16.51‐cm tubular reactor was constructed to hold 300 mL of chitosan‐immobilized enzyme. A full‐factorial test design was implemented to test the effect of substrate flow (20 and 100 mL/min), concentration (0.0015 and 0.003M), and repeated use of the test bed on efficiency of the system. Parameters were analyzed using repeated‐measures analysis of variance. Flow (p < 0.05) and concentration (p < 0.05) significantly affected substrate conversion, as did the interaction progressing from Run 1 to Run 2 on a bed (p < 0.05). Reactor stability tests indicated that the packed‐bed reactor continued to convert substrate for more than 12 h with a minimal reduction in conversion efficiency. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1294–1299, 2004  相似文献   

16.
Phase behavior of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) is investigated by X‐ray powder diffraction (XRD). The XRD patterns at elevated temperature show that there is a co‐existing temperature range of β‐ and δ‐phase during the phase transition process. Additionally, mechanical forces can catalyze the conversion from δ‐ back to β‐phase. Based on the diffraction patterns of β‐ and δ‐phase at different temperatures, we calculate the coefficients of thermal expansion by Rietveld refinement. For β‐HMX, the linear coefficients of thermal expansion of a‐axis and b‐axis are about 1.37×10−5 and 1.25×10−4 °C−1. A slight decrease in c‐axis with temperature is also observed, and the value is about −0.63×10−5 °C−1. The volume coefficient of thermal expansion is about 1.60×10−4 °C−1, with a 2.2% change from 30 to 170 °C. For δ‐HMX, the linear coefficients of thermal expansion of a‐axis and c‐axis are found to be 5.39×10−5 and 2.38×10−5 °C−1, respectively. The volume coefficient of thermal expansion is about 1.33×10−4 °C−1, with a 2.6% change from 30 to 230 °C. The results indicate that β‐HMX has a similar volume coefficient of thermal expansion compared with δ‐HMX, and there is about 10.5% expansion from β‐HMX at 30 °C to δ‐HMX at 230 °C, of which about 7% may be attributed to the reconstructive transition.  相似文献   

17.
A series of solid polymer electrolytes (SPEs) based on comb‐like nonionic waterborne polyurethane (NWPU) and LiClO4 are fabricated via a solvent free process. The NWPU‐based SPEs have sufficient mechanical strength which is beneficial to their dimensional stability. Differential scanning calorimetry analysis indicates that the phase separation occurs by the addition of the lithium salt. Scanning electron microscopy and X‐ray diffraction analyses illustrate the good compatibility between LiClO4 and NWPU. Fourier transform infrared study reveals the complicated interactions among lithium ions with the amide, carbonyl and ether groups in such SPEs. AC impedance spectroscopy shows the conductivity of the SPEs exhibiting a linear Arrhenius relationship with temperature. The ionic conductivity of the SPE with the mass content of 15% LiClO4 (SPE15) can reach 5.44 × 10?6 S cm?1 at 40 °C and 2.35 ×10?3 S cm?1 at 140 °C. The SPE15 possesses a wide electrochemical stability window of 0–5 V (vs. Li+/Li) and thermal stability at 140 °C. The excellent properties of this new NWPU‐based SPE are a promising solid electrolyte candidate for all‐solid‐state lithium ion batteries. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45554.  相似文献   

18.
A waterborne‐polyurethane‐based fluorescent dye 4‐amino‐N‐cyclohexyl‐1,8‐naphthalimide (WPU‐ACN) was synthesized by attaching 4‐amino‐N‐cyclohexyl‐1,8‐naphthalimide (ACN) into polyurethane chains according to a prepolymer?ionomer process. The structure of WPU‐ACN was confirmed by means of Fourier transform infrared spectroscopy and UV?visible absorption. The number‐average molecular weight, glass transition temperature and average emulsion particle size for WPU‐ACN were determined as 7.8 × 105 g mol?1, 60 °C and 60 nm, respectively. The improved thermal stability of WPU‐ACN could be attributed to the incorporation of naphthalimide units in the preformed urethane groups. The fluorescence intensity of WPU‐ACN was dramatically enhanced compared with that of ACN. It was found that the fluorescence intensity of WPU‐ACN increased with increasing temperature, and the fluorescence spectra of WPU‐ACN showed a positive solvatochromic effect. In addition, the fluorescence of WPU‐ACN emulsion was very stable not only for long‐term storage but also for fluorescence quenching. © 2013 Society of Chemical Industry  相似文献   

19.
A new blue fluorescent monomer, 9,10‐di(1‐naphthalenyl)‐2‐vinylanthracene, was designed and synthesized in good yield. Its homopolymer poly(9,10‐di(1‐naphthalenyl)‐2‐vinylanthracene) (P(ADN)) and soluble conductive vinyl copolymers poly[(9,10‐di(1‐naphthalenyl)‐2‐vinylanthracene)‐co‐styrene] (P(ADN‐co‐S)) and poly[(9,10‐di(1‐naphthalenyl)‐2‐vinylanthracene)‐co‐(9‐vinylcarbazole)] (P(ADN‐co‐VK)) were synthesized using free radical solution polymerization. All the polymers showed high glass transition mid‐point temperatures (203 to 237 °C) and good thermal stabilities. The photoluminescence emission of the copolymers was similar to that of P(ADN) (with two maxima at 423 and 442 nm). The lifetimes of P(ADN‐co‐S) (6.82 to 7.91 ns) were all slightly less than that of P(ADN) (8.40 ns). The lifetime of P(ADN‐co‐VK) increased from 7.8 to 8.8 ns with an increase in VK content. The fluorescence quantum yields of P(ADN‐co‐S) showed an overall increasing tendency from 0.42 to 0.58. The quantum efficiencies of P(ADN‐co‐VK) decreased from 0.36 to 0.19 with an increase of VK fraction. With increasing S/VK content, the highest occupied molecular orbital of P(ADN‐co‐S)/P(ADN‐co‐VK) ranged from ?5.58 to ?5.73 eV, which was similar to that of P(ADN) (?5.71 eV). The band gaps of P(ADN‐co‐S) and P(ADN‐co‐VK) were about 2.97 eV, which were equal to that of P(ADN), and smaller than that of 2‐methyl‐9,10‐di(1‐naphthalenyl)anthracene (MADN) (3.04 eV) and poly(9‐vinylcarbazole) (3.54 eV). Preliminary electroluminescence results were obtained for a homojunction device with the configuration ITO/MoO3 (20 nm)/P(ADN)/LiF (1 nm)/Al (100 nm), which achieved only 30–50 cd m?2, due to P(ADN) having a low mobility of 4.7 × 10?8 cm2 V?1 s?1 compared to that of its model compound MADN of 6.5 × 10?4 cm2 V?1 s?1. © 2013 Society of Chemical Industry  相似文献   

20.
Poly(2‐hydroxyethyl methacrylate‐co‐glycidyl methacrylate) p(HEMA–GMA) membrane was prepared by UV‐initiated photopolymerisation of 2‐hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA) in the presence of an initiator, azobisisobutyronitrile (AIBN). Cholesterol oxidase was immobilised directly on the membrane by forming covalent bonds between its amino groups and the epoxide groups of the membrane. An average of 53 µg of enzyme was immobilised per cm2 of membrane, and the bound enzyme retained about 67% of its initial activity. Immobilisation improved the pH stability of the enzyme as well as its temperature stability. The optimum temperature was 5 °C higher than that of the free enzyme and was significantly broader. The thermal inactivation rate constants for free and immobilised preparations at 70 °C were calculated as ki (free) 1.06 × 10?1 min?1 and ki (imm) 2.68 × 10?2 min?1, respectively. The immobilised enzyme activity was found to be quite stable in the repeated experiments. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号