首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liquefaction resistance of sand increases with cyclic pre-shearing and pre-shaking as a result of earthquakes if the strain level in the pre-shearing is small. When larger shear strains are imposed, liquefaction resistance decreases. These complicated effects of pre-shearing histories on the liquefaction resistance are investigated in this study through a series of cyclic triaxial tests. Various combinations of cyclic stress amplitude and number of cycles of pre-shearing are examined. The tested sand is Toyoura Sand at 45% relative density, under a confining pressure of 50 kPa. Test results indicate that for the range of shear strain amplitude in pre-shearing smaller than 0.35%, the liquefaction resistance increases with pre-shearing. The increase in the liquefaction resistance depends strongly on the volumetric strain in the pre-shearing, and several effects of the shear stress amplitude and number of cycles can be negligible. Small volumetric strain of the order of 1% doubled the liquefaction resistance. Meanwhile, in the range of shear strain amplitude larger than 0.6%, the liquefaction resistance decreases. The liquefaction resistance decreases as the shear strain amplitude increases. Shear strain amplitude is one of the factors dominating this degrading effect, and the volumetric strain exerts beneficial effects to a certain extent. In this study, another series of tests are conducted to investigate the combined effects of small and large strain amplitude pre-shearing. It is observed that small shear strain pre-shearing cycles subsequent to large shear strain cycles erased the degrading effect of the latter. However, a large shear strain pre-shearing after small strain cycles degrades the beneficial effect of the small shear strain pre-shearing cycles previously applied to the specimens; however, the effects of the former small strain pre-shearing remains.  相似文献   

2.
《Soils and Foundations》2012,52(3):498-510
This study focused on the role which static shear plays on the large deformation behavior of loose saturated sand during undrained cyclic loading. A series of undrained cyclic torsional shear tests was performed on saturated Toyoura sand specimens up to single amplitude shear strain exceeding 50%. Three types of cyclic loading patterns, i.e., stress reversal, intermediate and non-reversal, were employed by varying the initial static shear level and the cyclic shear stress amplitude. The observed types of failure could be distinguished into liquefaction (cyclic and rapid flow) and residual deformation by comparing both monotonic and cyclic undrained behavior. It was found that the presence of initial static shear does not always lead to an increase in the resistance to liquefaction or strain accumulation; they could either increase or decrease with an increasing initial static shear level depending on the type of loading pattern and failure behavior. In addition, according to the failure behavior which the specimens exhibited, three modes of development of large residual deformation were observed.  相似文献   

3.
The multiple liquefaction phenomenon has been attracting the attention of more and more researchers and engineers since the 2010–2011 Christchurch Earthquakes and the 2011 Great East Japan Earthquake. However, little has been known about the multiple liquefaction properties of sloped grounds. In this study, therefore, multiple liquefaction tests that consider the initial static shear stress, which have never been conducted before, were carried out with a special designed apparatus, the stacked-ring shear apparatus. A series of multiple liquefaction tests revealed that induced anisotropy, which is weak against the loading opposite to the direction of the initial static shear stress, was produced by the liquefaction of a sloped ground. As a result, a significant decrease in the liquefaction resistance during the next cyclic of shearing occurred. The indicators which influenced the magnitude of anisotropy were also discussed from the perspective of the reconsolidation procedures, the magnitude of initial static shear stress, and the type of ending of the previous liquefaction stage. In addition, it turned out that in the multiple liquefaction test with a larger initial static shear stress, the re-liquefaction resistance was higher because the shear stress opposite to the direction of the initial static shear stress, causing large negative dilatancy due to anisotropy, was smaller in that test.  相似文献   

4.
Strain localization, or the formation of shear bands, is a key aspect in understanding soil failure mechanisms. While efforts have been made in terms of measuring the shear band properties and the stress–strain behavior within shear bands, there are still uncertainties regarding when shear bands initiate and their influence on the development of large ground deformation. In this paper, the limiting value of shear strain, at which strain localization appears during undrained cyclic torsional shear tests with initial static shear, performed on loose Toyoura sand specimens (Dr=44–48%) up to a single amplitude of shear strain exceeding 50%, was evaluated. Non-uniform specimen deformation was observed at strain levels larger than 20%. However, the onset of strain localization could not be defined on the basis of visual observations. Therefore, the limiting values for half of the double amplitude (γDA/2) and single amplitude (γSA) shear strain, to initiate strain localization, were determined from test results based on changes in the deviator stress response and strain accumulation properties as well as changes in the strain-softening behavior during cyclic shear. It was found that γSA is a more appropriate parameter than γDA/2. Irrespective of the static shear stress level, the limiting strain value for γSA was evaluated to be in the range of 23–28% for liquefied loose Toyoura sand specimens (i.e., stress reversal and intermediate tests). Alternatively, the limiting strain value could not be properly defined when liquefaction did not occur (i.e., non-reversal stress tests), although various methods were employed.  相似文献   

5.
In order to study the cyclic behavior of liquefied sands at extremely large strain levels up to double amplitude shear strain of about 100%, a series of undrained cyclic torsional shear tests while keeping the specimen height constant was performed on saturated Toyoura sand under different densities, two kinds of in-situ frozen sandy samples and their reconstituted specimens. Due correction was made for the effect of membrane force on the measured shear stress. After exceeding a certain level of overall shear strain, the specimen deformation became non-uniform, which is called as “strain localization” in the present study. The initiation of such localization was associated with the changes in the cyclic amplitude of deviator stress and the increment of shear strain. In the case of Toyoura sand, the limiting value of shear strain to initiate strain localization was found to increase with decrease in the relative density, and such a trend was consistent with the empirical correlation of soil liquefaction when the relative density is higher than 30%. In the case of in-situ frozen sandy samples, their limiting shear strain values were smaller than those of the reconstituted specimens, suggesting that their soil structures were different from each other under different degrees of natural aging effects.  相似文献   

6.
《Soils and Foundations》2023,63(3):101318
Liquefaction resistance is known to increase concomitantly with the increase in time after construction or sedimentation. Nevertheless, the mechanisms of its aging effect on liquefaction have not been completely elucidated. To clarify the mechanisms of aging in sandy soils, the liquefaction resistance (CRR), initial and secant shear moduli (G0 and Gsec), and laboratory penetration resistance of long-term consolidated sand specimens were examined using cyclic undrained triaxial tests, local small strain (LSS) tests equipped with bender elements (BEs), and penetration index tests, respectively. Based on the existing reports, the CRR was inferred from G0, Gsec, and the laboratory penetration resistance. In the case of Toyoura sand of Dr = 40%, the CRR increased by about 14% with a 360-day consolidated specimen in the cyclic undrained triaxial tests. However, increases in the CRR evaluated from G0 and the laboratory penetration resistance were nothing and only 2%, respectively. Gsec started to degrade at greater shear strain in the long-term consolidated specimens. An increase in the CRR, evaluated from the Gsec of 0.01% shear strain, had a much better agreement with that obtained from the cyclic undrained triaxial tests.  相似文献   

7.
针对地震中倾斜场地砂土液化流动大变形特征与机理,以具有明显片状颗粒结构特征的南京细砂为研究对象,采用了英国GDS公司的动态空心圆柱扭剪仪,开展了饱和南京细砂液化后特大流动变形特性的循环扭剪试验研究,主要分析了橡皮膜效应、有效围压、循环加载幅值和初始静剪应力等因素对南京细砂液化流动大变形特性的影响规律及其机理。试验结果表明:在其它条件不变时,随着有效围压增加,饱和南京细砂抗液化强度和抗单向液化流动累积变形强度都有所增加。当保持围压不变时,饱和南京细砂抗单向液化流动累积变形的强度有增加的趋势。随着初始静剪应力比的变大,南京细砂的抗液化和抗单向累积变形强度特征可以分为三个不同阶段。在无初始静剪应力条件下饱和南京细砂液化后仍以循环液化流动变形为主和单向流动累积变形为辅。但是,随着初始静剪应力比的增大,饱和南京细砂抗液化强度和抗单向液化流动累积变形强度明显降低,即主要发生单向液化流动累积变形破坏。当初始静剪应力比接近或超过循环动剪应力比时,饱和南京细砂的抗液化和抗单向流动累积变形的强度又明显增大,但仍以液化单向流动累积破坏为主。当初始静剪应力比继续增大到一定程度时,饱和南京细砂已经很难液化,其抵抗单向累积变形的强度也明显降低,主要原因应为此时试样发生的是塑性累积大变形破坏。同时,试验结果表明饱和南京细砂的液化后流动大变形特性也明显区别于含圆形颗粒为主的日本丰浦砂。  相似文献   

8.
《Soils and Foundations》2023,63(3):101326
This study investigated sand anisotropy experimentally using a hollow cylinder apparatus. The effect of the initial anisotropy on the shear behavior of sand was illustrated by conducting experiments on specimens with bedding planes and systematically varying the density, principal stress direction, and intermediate principal stress. The change in induced anisotropy during shearing was experimentally captured by re-shearing the specimens subjected to prior shear history. The experimental results revealed the following: (a) Anisotropy in sand, whether initial anisotropy developing during specimen preparation or induced anisotropy developing due to shear history, causes pseudo-density changes in the mechanical behavior, in which sand of the same density behaves as if it has a different density depending on the direction of shear. (b) The changes in induced anisotropy, due to shearing in the same direction as that of the prior shear, make the soil behave similarly to dense sand, whereas shearing in a direction perpendicular to the prior shear makes the soil behave similarly to loose sand. (c) The larger the prior shear, the more pronounced the pseudo-density changes that appear in the subsequent behavior. Moreover, the significance of induced anisotropy in liquefaction and compaction phenomena was experimentally demonstrated through single and double swing cyclic shear tests. The results obtained from the study will be useful for validating models that incorporate induced anisotropy.  相似文献   

9.
In view of phenomenological observations, the anisotropic state variable accounting for the effect of inherent fabric anisotropy, which can describe the microstructural characteristics of sand, is thought to influence the critical state of sand. Based on revised forms of the anisotropic state variable, the form for the anisotropic critical state line function is revised and the non-monotonically anisotropic effects are incorporated into the strength parameter in the re-adjustment of the elements of the model. The anisotropic plasticity model parameters of Toyoura sand are re-calibrated with triaxial compression and extension tests having various deposition directions. In comparison to the experiments on Toyoura sand, it is shown that the model can simulate the anisotropic stress-strain relationship reasonably well. Then, bifurcation analyses are conducted to predict the onset of strain localization with the corresponding non-coaxial anisotropic model. The results show that the modeling of shear band formation based on the non-coaxial model is in agreement with the tests considering the anisotropic characteristic.  相似文献   

10.
采用剪切波速与振动三轴联合试验装置,研究了具有松散结构的原状和重塑饱和粉土抗液化强度之间的相关性。结果表明,具有松散结构的原状与重塑饱和土样的振动应变随振动次数的变化趋势是一致的。如果把重塑饱和土样的初始剪切波速恢复到原状饱和土样的初始剪切波速,重塑土样的抗液化强度也被恢复到原状土样的抗液化强度。此时,原状与重塑土样的抗液化强度与抗液化强度曲线之间的相关系数大于0.89,而且这种良好的相关性与确定破坏振次的液化判别标准无关。这里的研究结果支持饱和松散试验土样的初始剪切波速可以作为控制其抗液化强度的一个关键参数。  相似文献   

11.
饱和砂土的剪切波速与抗液化强度相关性研究   总被引:9,自引:3,他引:9       下载免费PDF全文
依据扭剪振动原理,开发出剪切波速与振动三轴联合试验装置。进而针对取自20 多个工程场地、埋深在20 m 以内的12种大量原状砂土,分析了同一类土、在同一固结压力作用下,原状与重塑土样抗液化强度与其初始剪切波速之间的相关性。结果表明,当判别液化的应变标准不超过6%时,土的抗液化强度与其初始剪切波速之间存在良好的对应关系。当应变破坏标准超过6%,土的初始剪切波速与抗液化强度之间不具备唯一对应关系。  相似文献   

12.
A high-pressure low-temperature plane strain testing apparatus was developed for visualizing the deformation of methane hydrate-bearing sand due to methane hydrate production. Using this testing apparatus, plane strain compression tests were performed on pure Toyoura sand and methane hydrate-bearing sand with localized deformation measurements. From the results, it was observed that the methane hydrate-free specimens, despite their relatively high density, showed changes in compressive volume. Marked increases in the initial stiffness and strength of the methane hydrate-bearing sand were observed (methane hydrate saturation of SMH=60%). Moreover, the volumetric strain changed from compressive to dilative. For the specimens with methane hydrate, a dilative behavior above SMH=0% was observed. An image analysis showed that the shear bands of the methane hydrate-bearing sand were thinner and steeper than those of the host sand. In addition, the dilative volumetric strain in the shear band increased markedly when methane hydrate existed in the pore spaces.  相似文献   

13.
《Soils and Foundations》2001,41(6):53-62
In order to investigate the effects of different consolidation conditions on liquefaction characteristics of sands containing fines, a series of undrained cyclic triaxial liquefaction tests was performed on artificial samples prepared by mixing Toyoura sand and bentonite at a ratio of 95% to 5% by dry weight. Some specimens were isotropically consolidated for i, 20 or 100 days at a regular temperature, while the others were consolidated for 2 or 5 days while heating the cell water up to 60 degrees centigrade. Over-consolidated specimens with OCR of 2 and 4 were also prepared at a regular temperature. During consolidation and cyclic triaxial shearing of several specimens, their quasi-elastic deformation properties were measured while applying very small amplitude cyclic axial loads. Longer consolidation time, higher temperature during consolidation or higher ratio of over-consolidation resulted in an increase in the liquefaction resistance, with the exception that the liquefaction resistance of specimens consolidated for 100 days was not larger than that of specimens consolidated for 20 days. On the other hand, such different consolidation conditions affected the change in the quasi-elastic deformation properties in different manners. Development of cementation was suggested to have occurred during consolidation under high temperature. Reduction in the extent of anisotropy was suggested to have occurred during over-consolidation, which was accompanied by a decrease in the negative dilatancy at the initial part of shearing.  相似文献   

14.
 低塑性粉土广泛存在于世界范围内,在地震中容易产生液化现象,然而一些基础设施破坏不仅见于地震中也发生在地震后,这就决定了研究低塑性粉土震后行为的必要性。以美国中部密西西比河沿岸低塑性粉土为试验材料,研究动载对低塑性粉土静态和动态强度的影响。在动三轴仪上对试样施加动载引起超孔隙水压力,排水重固结后,分别对2组震动后试样进行静态和动态三轴强度试验。试验结果表明,当液化水平小于0.70时,前期动载对粉土的不排水剪切强度影响不大;相反地,只有当液化水平大于0.70,密西西比河沿岸粉土的震后重固结体积应变和不排水剪切强度才伴随着液化水平的提高显著增加,但相对于砂土而言,重固结体积应变在较低的液化水平时即有明显增加。与前期动载对不排水剪切强度的影响不同,当动载所引起的液化水平为0.35或轴向应变为0.2%时,抗液化强度达到最大值,若液化水平大于0.35,抗液化强度伴随液化水平提高而降低。如果前期荷载引起较大的压应变,在重固结后第二次动载循环中,轴向压力相比轴向拉力引起较小的超孔隙水压力。  相似文献   

15.
In order to investigate liquefaction-induced ground displacement, we conducted a series of undrained cyclic torsional shear tests on saturated Toyoura sand using a modified torsional apparatus capable of applying and measuring double amplitude shear strain up to about 100%. The limiting value of double amplitude shear strain, at which strain localization appears during undrained cyclic loading tests, was evaluated from the test results with reference to the change in the deviator stress during liquefaction. The limiting strain values, which increase with a decrease in the relative density of the specimen, were found to be consistent with the maximum amounts of liquefaction-induced ground displacement observed in the previous shaking table model tests and most of the relevant case studies. This feature is reasonable considering the reduction in the mobilized cyclic shear stress in liquefied soil due to the degradation of the shear resistance. As long as the liquefied soil layer remains in uniform deformation, these limiting strain values may be used in estimating the maximum amount of liquefaction-induced ground displacement.  相似文献   

16.
17.
2008年汶川地震之前,全球历史地震中砾性土液化实例不足10例,远远少于砂土液化的数量和规模,实际地震中砾性土液化的发生较为罕见,必然存在较为严格的发生条件,在土性条件、地震荷载、埋藏条件等均满足时才有可能发生。以2008年汶川地震大量砾性土液化为背景,详细分析了砾性土液化实例的水文与工程地质条件、渗透性能与排水边界条件,选取了典型砾性土液化场地并人工探坑获取砾性土试样,开展了试样直径为150 mm的动三轴和振动台对比试验。结果表明:1橡皮膜嵌入效应可以忽略或者进行有效消除后,相同相对密实度下砾性土、砂土的抗液化强度较为接近;2采用Seed等的孔压计算模型,随着动应力水平的逐渐增大,归一化的砾性土残余孔压比向上突起,增长模型趋向于A型曲线;3全球其他历史地震和2008年汶川地震砾性土液化实例中,基本上存在砾性土渗透系数较低或者排水边界条件受阻的情况;4砾性土符合无黏性散粒土体(包括砂土)发生液化的一般机理解释,但是,砾性土产生孔隙水压力上升、有效应力下降的现象,需要具备两个必要条件:1振动作用足以使砾性土的结构发生破坏而振密或土颗粒压碎,产生的剪应变只有大于门槛剪应变时(约0.02%),孔压才会进一步发展,剪应变只有大于一定程度时(约0.1%),孔压才有可能迅速增长直至达到上覆压力;2只有在不排水条件或排水通道不畅通的条件下,砾性土场地才有可能发生液化。  相似文献   

18.
循环流动特性是剪胀性砂土液化变形的典型特征,为研究液化循环流动土体的动力剪切特性,在骨架相对密实度分别为35%、50%和80%的砂土中添加不同含量的细颗粒,以改变液化流动土体的重度,通过循环扭剪试验研究不同骨架密度、具有不同细粒含量的液化流动土体在大变形阶段的剪切模量及阻尼比的变化规律。试验结果表明:液化循环流动土体在流动大变形阶段仍具有一定的模量,模量随着应变的增大而逐渐减小;流动变形阶段的模量大小与液化土体的重度基本无关;强度恢复阶段模量与细粒含量及骨架相对密实度密切相关;液化大变形阶段卸载模量趋于稳定,其稳定值约为初始卸载模量的35%;阻尼比随剪应变的增大而先增大,当土体达到初始液化以后,阻尼比随剪应变的发展呈减小的变化趋势;对于相同骨架密度的土体,相变角随着细粒含量的增加而减小,临界状态线的斜率随着细粒含量的而增加而增大。  相似文献   

19.
A distinctive characteristic of the reliquefaction behavior of soils is that there are instances where the phenomenon of a sharp decrease in liquefaction resistance occurs in spite of increases in soil density caused by drainage of water after liquefaction. On the other hand, there have also been examples of increased liquefaction resistance occurring throughout a soil's liquefaction history that cannot be explained merely by density increases. These facts point to the existence of factors other than density that sway the liquefaction resistance of soils. The current paper demonstrates that, in fact, anisotropy is an important factor influencing liquefaction resistance. This is made clear through the results of systematic triaxial shear tests, which show that the higher the level of developed anisotropy, the lower the liquefaction resistance. In the process of verifying the above, we found that continuous and orderly changes in anisotropy are repeated with dizzying rapidity during liquefaction. Furthermore, we show herein that there is no intrinsic difference between the inherent anisotropy acquired by soil during its sedimentation period and the induced anisotropy produced by plastic deformation developed through its stress history, although anisotropy has often been divided into these two types and has been considered separately in the past. We also show that what has been referred to as inherent anisotropy is nothing more than the initial state of induced anisotropy.  相似文献   

20.
《Soils and Foundations》2022,62(3):101128
Previous researcher explained that the catastrophic long-distance flow-slide in Palu city, in which the surface ground laterally deformed up to several kilometers after the earthquake in the gently ground inclination (1–5%), might be promoted by the inflow of confined aquifer or fault water. This paper aims to investigate the flow behavior characteristics of Toyoura sand and in-situ sand by employing water inflow shear tests with a constant shear stress in the triaxial apparatus and the modified torsional shear apparatus. Through this experiment, rapid-flow behavior can be observed on both materials, even at a low initial static shear stress. This behavior depends on the volumetric strain development characteristics, which are also correlated with the material's initial densities. The dense specimen showed this rapid flow state at a higher volumetric strain level than the loose specimen. Besides, the flow rate during the rapid flow state was also measured. This rate is affected by the material's initial densities as well as the initial static shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号