首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite recent significant progress in fabricating tough hydrogels, it is still a challenge to realize high strength, large stretchability, high toughness, rapid recoverability, and good self‐healing simultaneously in a single hydrogel. Herein, Laponite reinforced self‐cross‐linking poly(N‐hydroxyethyl acrylamide) (PHEAA) hydrogels (i.e., PHEAA/Laponite nanocomposite [NC] gels) with dual physically cross‐linked network structures, where PHEAA chains can be self‐cross‐linked by themselves and also cross‐linked by Laponite nanoplatelets, demonstrate integrated high performances. At optimal conditions, PHEAA/Laponite NC gels exhibit high tensile strength of 1.31 MPa, ultrahigh tensile strain of 52.23 mm mm?1, high toughness of 2238 J m?2, rapid self‐recoverability (toughness recovery of 79% and stiffness recovery of 74% at room temperature for 2 min recovery without any external stimuli), and good self‐healing properties (strain healing efficiency of 42%). The work provides a promising and simple strategy for the fabrication of dual physically cross‐linked NC gels with integrated high performances, and helps to expand the fundamentals and applications of NC gels.  相似文献   

2.
It remains a challenge to develop tough hydrogels with recoverable or healable properties after damage. Herein, a new nanocomposite double‐network hydrogel (NC‐DN) consisting of first agar network and a homogeneous vinyl‐functionalized silica nanoparticles (VSNPs) macro‐crosslinked polyacrylamide (PAM) second network is reported. VSNPs are prepared via sol‐gel process using vinyltriethoxysilane as a silicon source. Then, Agar/PAM‐SiO2 NC‐DN hydrogels are fabricated by dual physically hydrogen bonds and VSNPs macro‐crosslinking. Under deformation, the reversible hydrogen bonds in agar network and PAM nanocomposite network successively break to dissipate energy and then recombine to recover the network, while VSNPs in the second network could effectively transfer stress to the network chains grafted on their surfaces and maintain the gel network. As a result, the optimal NC‐DN hydrogels exhibit ultrastretchable (fracture strain 7822%), super tough (fracture toughness 18.22 MJ m‐3, tensile strength 431 kPa), rapidly recoverable (≈92% toughness recovery after 5 min resting at room temperature), and self‐healable (can be stretched to 1331% after healing) properties. The newly designed Agar/PAM‐SiO2 NC‐DN hydrogels with tunable network structure and mechanical properties by multi‐bond crosslinking provide a new avenue to better understand the fundamental structure‐property relationship of DN hydrogels and broaden the current hydrogel research and applications.  相似文献   

3.
Collagen‐based hydrogels have gained significant popularity in biomedical applications; however, traditional collagen hydrogels are easily disabled for lack of self‐healing properties due to their non‐reversible bonds. Here, a self‐healing collagen‐based hydrogel has been developed based on dynamic network chemistry, consisting of dynamic imine linkages between collagen and dialdehyde guar gum, as well as diol‐borate ester bonds between guar gum and borax. In addition, macromolecular interactions amongst macromolecules are involved. The above‐mentioned interactions were validated by Fourier transform infrared spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and DSC. The as‐prepared collagen‐based hydrogels showed good injectability and rapid self‐healing capacity (within 3 min) as reflected from injection tests, optical microscope observations, rheological measurements, as well as self‐healing studies. In addition, the collagen‐based hydrogels showed accelerated wound‐healing properties. This study offers a facile strategy to endow self‐healing ability on collagen‐based hydrogels without any external stimulus, which show great application potential as wound dressings. © 2020 Society of Chemical Industry  相似文献   

4.
Compared with hydrogel‐like biological tissues such as cartilage, muscles, and blood vessels, current hyaluronic acid hydrogels often suffer from poor toughness and limited self‐healing properties. Herein, a facile and generalizable strategy inspired by mussel cuticles is presented to fabricate tough and self‐healing double‐network hyaluronic acid hydrogels. These hydrogels are composed of ductile, reversible Fe3+‐catechol interaction primary networks, and secondarily formed brittle, irreversible covalent networks. Based on this design strategy, the hyaluronic acid hydrogels are demonstrated to exhibit reinforced mechanical strength while maintaining a rapid self‐healing property. In addition, by simply regulating pH or UV irradiation time, the mechanical properties of the hydrogels can be regulated conveniently through variations between the primary and secondary networks.  相似文献   

5.
Poly(acrylic acid) hydrogels crosslinked with N,N′‐methylenebisacrylamide were synthesized by free radical polymerization. Polymerization conditions had a significant influence over the gel content and swelling behaviour of the hydrogels. The incorporation of calcium ions led to the origin of a self‐healing feature. The self‐healing behaviour and mechanical performance of the hydrogels were systematically investigated. The hydrogels showed good tensile strength of 1 MPa and excellent stretchable behaviour where hydrogels regained instantaneously. Hydrogel pieces joined together to become an integrated matrix as soon as two cut pieces were brought in contact. The hydrogels possessed a marked healing efficiency of 97% within 6 h at room temperature without any external intervention. The results are explained in terms of the dynamic mobility of calcium ions within the dual‐crosslinked networks of the poly(acrylic acid) hydrogels. © 2017 Society of Chemical Industry  相似文献   

6.
Conductive hydrogels as potential soft materials have attracted tremendous attention in wearable electronic devices. Nonetheless, manufacturing intelligent materials that integrate mouldability, stretchability, responsive ability, fast self‐healing ability, as well as mechanical and electrochemical properties is still a challenge. Here, multifunctional conductive hydrogels composed of poly(vinyl alcohol) (PVA) and polypyrrole (PPy) nanotube are prepared using borax as cross‐linker. The existence of multicomplexation, entangled PVA chains, and interconnected PPy nanotubes, as well as extensive hydrogen bonding results in the fabrication of hierarchical network of PVA‐PPy hydrogels. PVA‐PPy hydrogels exhibit high stretchability (more than 1000%), multiresponsiveness, low density (0.95 g cm?3), high water content (96%), and 15 s self‐healing features. Furthermore, the self‐healing supercapacitor electrode and motion sensor based on PVA‐PPy hydrogels demonstrate ideal performances. This facile strategy in this work would be promising to construct an excellent multifunctional soft material for various flexible electrode and biosensor.  相似文献   

7.
Flexible sensors are becoming required in heath monitoring and human–machine interfaces, but it is still a challenge to develop flexible sensors with integrated high performances. Herein, high‐performance flexible sensors are fabricated that are self‐healing, reversibly adhesive, and utilizing stretchable hydrogels, which are composed of a pluronic F127 diacrylate (F127DA) cross‐linked poly(acrylic acid) (PAA) network and polydopamine (PDA), and further cross‐linked by Fe3+. The unique structure endows the resulting hydrogels (PAA‐PDA‐Fe3+ hydrogels) excellent self‐healing property, reversible adhesion property, mechanical stretchability, and electrical conductivity. On the basis of the excellent properties of PAA‐PDA‐Fe3+ hydrogels, flexible sensors with large sensing range (0–575%), high sensitivity (GF = 6.31), low response time (0.25 s), and excellent robustness (>500 cycles) are assembled and further applied in detecting both large and subtle strains induced by human motions and water ripple. Overall, this work not only provides an alternative clue to construct multi‐functional hydrogels, but also offers a new kind of high‐performance materials for flexible electronic devices, especially those for health monitoring and human–machine interface.  相似文献   

8.
The multifunctional double network (DN) soft hydrogels reported here are highly swellable and stretchable pH‐responsive smart hydrogel materials with sufficient strength and self‐healing properties. Such multifunctional hydrogels are achieved using double crosslinking structures with multiple physical and chemical crosslinks. They consist of a copolymer network of acrylamide (AM) and sodium acrylate (Na‐AA) and other reversible network of poly(vinyl alcohol)–borax complex. They were characterized by Fourier transform IR analysis and studied for their hydrogen bonding and ionic interaction. The degree of equilibrium swelling was observed to be as high as 5959% (at pH 7.0) for a hydrogel with AM/Na‐AA = 25/75 wt% in the network (GS‐6 sample). The highest degree of swelling was observed to be 6494% at pH 8.5. The maximum tensile strength was measured to be 1670, 580 and 130 kPa for a DN hydrogel (GS‐2 sample: AM/Na‐AA =75/25 wt% with 20, 40 and 60 wt% water content, respectively). The self‐healing efficiency was estimated to be 69% for such a hydrogel. These multifunctional DN hydrogels with amalgamation of many functional properties are unique in hydrogel materials and such materials may find applications in sensors, actuators, smart windows and biomedical applications. © 2018 Society of Chemical Industry  相似文献   

9.
A dual cross‐linking design principle enables access to hydrogels with high strength, toughness, fast self‐recovery, and robust fatigue resistant properties. Imidazole (IMZ) containing random poly(acrylamide‐co‐vinylimidazole) based hydrogels are synthesized in the presence of Ni2+ ions with low density of chemical cross‐linking. The IMZ‐Ni2+ metal–ligand cross‐links act as sacrificial motifs to effectively dissipate energy during mechanical loading of the hydrogel. The hydrogel mechanical properties can be tuned by varying the mol% of vinylimidazole (VIMZ) in the copolymer and by changing the VIMZ/Ni2+ ratio. The resultant metallogels under optimal conditions (15 mol% VIMZ and VIMZ/Ni2+ = 2:1) show the best mechanical properties such as high tensile strength (750 kPa) and elastic modulus (190 kPa), combined with high fracture energy (1580 J m?2) and stretchability (800–900% strain). The hydrogels are pH responsive and the extent of energy dissipation can be drastically reduced by exposure to acidic pH. These hydrogels also exhibit excellent anti‐fatigue properties (complete recovery of dissipated energy within 10 min after ten successive loading–unloading cycles at 400% strain), high compressive strength without fracture (17 MPa at 96% strain), and self‐healing capability due to the reversible dissociation and re‐association of the metal ion mediated cross‐links.  相似文献   

10.
以N异丙基丙烯酰胺(PNIPA)为单体,纳米黏土硅酸镁锂(LXG)为交联剂,通过原位聚合反应制备了一种具有自修复功能的高分子/纳米黏土复合水凝胶。探讨了单体和黏土配比、单体与分散剂配比等参数对水凝胶成胶性能的影响。重点对该复合水凝胶自修复机理及性能进行评价。结果表明,当单体与黏土比例为1.5~2:1,单体与分散剂比例为1:10时水凝胶成胶性能良好;水凝胶的溶胀性能随黏土含量的增加而下降,最大溶胀率为12.8 g/g;合成的水凝胶在室温下无需任何修复剂,24 h即可实现损伤断面的良好修复,自修复效率最高为43.1 %。  相似文献   

11.
In this study, nanocomposite hydrogels composed of sodium carboxymethylated starch (CMS)-containing CuO nanoparticles (CMS@CuO) were synthesized and used as experimental wound healing materials. The hydrogels were fabricated by a solution-casting technique using citric acid as a crosslinking agent. They were characterized by Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA) to evaluate their physicochemical properties. In addition, swelling, antibacterial activities, antioxidant activities, cytotoxicity, and in vivo wound healing were investigated to evaluate the wound healing potential of the CMS@CuO nanocomposite hydrogels. Growth inhibition of the Gram-positive and Gram-negative pathogens, antioxidant activity, and swelling were observed in the CMS@CuO nanocomposite hydrogels containing 2 wt.% and 4 wt.% CuO nanoparticles. The hydrogel containing 2 wt.% CuO nanoparticles displayed low toxicity to human fibroblasts and exhibited good biocompatibility. Wounds created in rats and treated with the CMS@2%CuO nanocomposite hydrogel healed within 13 days, whereas wounds were still present when treated for the same time-period with CMS only. The impact of antibacterial and antioxidant activities on accelerating wound healing could be ascribed to the antibacterial and antioxidant activities of the nanocomposite hydrogel. Incorporation of CuO nanoparticles in the hydrogel improved its antibacterial properties, antioxidant activity, and degree of swelling. The present nanocomposite hydrogel has the potential to be used clinically as a novel wound healing material.  相似文献   

12.
In this article, polydopamine (PDA) is efficiently adhered on the surface of graphene oxide (GO) by mussel‐inspired chemistry. The obtained reduced GO/PDA (RGO@PDA) nanocomposites are used for catalyzing reversible coordination‐mediated polymerization under microwave radiation. Well‐defined and iodine‐terminated polyacrylonitrile‐co‐poly(n‐butyl acrylate) (PAN‐co‐PnBA) is successfully fabricated by using RGO@PDA nanocomposites as catalysts. Importantly, green and novel strategy of PAN‐co‐PnBA‐type self‐healing nanocomposite materials is further fabricated with RGO@PDA as additive after polymerization as catalyst in one‐pot. As a reinforcement agent, RGO@PDA can also improve the mechanical and self‐healing properties of hybrid materials, which opens up a novel and green methodology for the preparation of self‐healing hybrid materials.  相似文献   

13.
Composite hydrogels of graphitic carbon nitride nanosheets (CNNS) and polyacrylamide (PAM) with superior UV absorption and visible transparence capabilities are reported. CNNS is employed not only as a photocatalytic initiator to trigger the polymerization of acrylamide, but also as a cross‐linker to 3D connected PAM chains via hydrogen bonds. The obtained CNNS/PAM hydrogels are highly moldable for preparing various forms, and have good mechanical properties, self‐healing ability, and photo‐stability. Furthermore, the composite hydrogels have a wide spectral range for UV absorption compared to conventional UV protective materials. Besides the complete screening of UVB (280–315 nm) in sun radiation, the CNNS/PAM hydrogel film can also filter >95% UVA radiation (315–400 nm) by regulating the coating thickness, meanwhile retaining a high visible transmittance. Therefore, the CNNS/PAM hydrogels have potential applications for shielding UV radiation. Additionally, this strategy provides a common and facile route to fabricate functional composite hydrogels via photo‐induced polymerization.  相似文献   

14.
Self‐healable hydrogels are promising soft materials with great potential in biomedical applications due to their autonomous self‐repairing capability. Although many attempts are made to develop new hydrogels with good self‐healing performance, to integrate this characteristic along with other responsive multifunctions into one hydrogel still remains difficult. Here, a self‐healable hybrid supramolecular hydrogel (HSH) with tunable bioadhesive and stimuli‐responsive properties is reported. The strategy is imparting graphene oxide (GO) nanosheets and quadruple hydrogen bonding ureido‐pyrimidinone (UPy) moieties into a thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) polymer matrix. The obtained GO–HSH hydrogel shows rapid self‐healing behavior and good adhesion to various surfaces from synthetic materials to biological tissue. In addition, doxorubicin hydrochloride (DOX) release profiles reveal the dual thermo‐ and pH‐responsiveness of the GO–HSH hydrogel. The DOX‐loaded hydrogel can further directly adhere to titanium substrate, and the released DOX from this thin hydrogel coating remains biologically active and has high capability to kill tumor cells.  相似文献   

15.
Inclusion of nano‐clays into hydrogels is an efficient approach to produce nanocomposite hydrogels. The introduction of nano‐clay into hydrogels causes an increase in water absorbency. In the present work, Nanocomposite hydrogels based on kappa‐carrageenan were synthesized using sodium montmorillonite as nano‐clay. Acrylamide and methylenebisacrylamide were used as monomer and crosslinker, respectively. The structure of nanocomposite hydrogels was investigated by XRD and SEM techniques. Swelling behavior of nanocomposite hydrogels was studied by varying clay and carrageenan contents as well as methylenebisacrylamide concentration. An optimum swelling capacity was achieved at 12% of sodium montmorilonite. The swollen nanocomposite hydrogels were used to study water retention capacity (WRC) under heating. The results revealed an increase in WRC due to inclusion of sodium montmorilonite clay. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
With excellent biocompatibility and unique physiochemical properties, nanocelluloses including cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) are promising candidates for preparing biomedical hydrogels. CNCs and CNFs are different in morphology and surface charges. Herein, CNCs and two CNFs (CNFs-C, Carboxylated CNFs; CNFs-P, Phosphorylated CNFs) were synthesized and applied to fabricate hydrogels through metal crosslinking. Aluminum crosslinking was found to be the best choice for enhancing the strength. This study systematically compared the morphologies, storage modulus, loss factor, continuous shear ramp, self-healing, swelling, in vitro degradation and injectable properties of the fabricated hydrogels. Further, a radar chart is summarized as guidelines to direct the rational selection to meet the specific requirements of further biomedical applications. At the same nanocellulose concentration and after Al3+ crosslinking, CNCs hydrogels had strong water holding capacity twice as much as that of CNFs hydrogels. While CNFs hydrogels showed higher hardness and stronger resistance to degradation than that of CNCs. These results provide detailed insights into nanocellulose hydrogels, making it possible to use these guidelines to select hydrogels for desired performance.  相似文献   

17.
Chitosan (CS) is a semi‐natural polymer with supreme biological function, while the strong interchain hydrogen bonds cause poor water solubility and limit its broader use. To break the semi‐rigid structure of CS, a kind of CS modified by adamantane (AD‐CS) was successfully synthesized by amidation reaction with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride as catalyst. The chemical structure of AD‐CS was characterized by Fourier transform infrared spectroscopy and 1H NMR. The AD substitution degree of CS is around 2%, calculated by 1H NMR. A soft and transparent hydrogel composed of hydrogen bonds was obtained directly by simply adding a certain amount of water under mild conditions. Rheological measurements were carried out to research the mechanism of hydrogel formation by measuring the influence of different additives and conditions on the AD‐CS hydrogel. Reinforced hydrogels were prepared by freezing and thawing. The mechanical strength and self‐healing property of reinforced and pristine hydrogels were assessed with an oscillatory rheometer. The modulus of the reinforced hydrogel was obviously enhanced without much loss of self‐healing property. Other properties such as adhesion, injectability and temperature response were also studied. These injectable and self‐healing hydrogels show potential value in medical care. Additionally, this is a new method to design CS hydrogels with their original interchain hydrogen bonds. © 2019 Society of Chemical Industry  相似文献   

18.
A series of novel nanocomposite hydrogels were prepared by a cross‐linking copolymerization method. Structural and morphological characterizations of the nanocomposite hydrogels revealed that a good compatibility exists between poly(acrylamide‐co‐sodium methacrylate) [P(AM‐co‐SMA)] and carboxyl‐functionalized carbon nanotubes (MWNTs–COOH). The P(AM‐co‐SMA)/MWNTs–COOH nanocomposite hydrogels with a suitable MWNTs–COOH loading exhibited better swelling capability, higher pH sensitivity, good reversibility, and repeatability, and rapid response to external pH stimuli, compared with the P(AM‐co‐SMA). The compression mechanical tests revealed that the nanocomposite hydrogel displayed excellent compressive strengths and elastic mechanical properties, with higher ultimate compressive stress, and meanwhile still retain a good recoverable strain in the presence of MWNTs–COOH. These excellent properties may primarily be attributed to effectively dispersing of a suitable MWNTs–COOH loading into the matrix of the polymers and formation of additional hydrogen bonds. The nanocomposite hydrogels were expected to find applications in drug controlled release and issue engineering. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

19.
Conventional hydrogels are extremely brittle, fragile and poorly conductive, which limits their applications in a variety of aspects. In this study, we fabricated a novel kind of nanocomposite self‐oscillating hydrogel poly(AA‐co‐Fe(phen)3)/PVA/RGO with high conductivity and good mechanical strength by dispersing reduced graphene oxide (RGO). Due to the synergetic effect of RGO dispersed in the hydrogels or dry gels and Fe metal which is the reduction product of the Fe(phen)3 moiety by RGO, the hydrogels have a high conductivity of 18.2 S m?1 with 0.67 wt% RGO content. The dispersed RGO in the hydrogels combined with the network structure by means of hydrogen bonding, π–π stacking and electrostatic interaction and was demonstrated to enhance the mechanical properties of the hydrogels. The elastic modulus achieves 65.2 kPa (1020% of the tensile strength) and 236.4 kPa (with 70% compression), respectively. In addition, the prepared hydrogels exhibit a self‐oscillating behavior in a Belousov–Zhabotinsky solution free of catalyst. These results can be broadly applied in the future in the development of an autonomous on–off switching, flexible/stretchable, graphene‐based soft electronic device. © 2019 Society of Chemical Industry  相似文献   

20.
为了提高海藻酸盐水凝胶的生物应用性,采用互穿网络技术、纤维素纳米晶(CNCs)补强和明胶表面覆积相结合的方法构建了氧化海藻酸盐/纤维素纳米晶/聚丙烯酰胺-明胶 (OSA/CNCs/PAM-GT) 复合水凝胶。通过FT-IR、TGA、 XRD、溶胀性和降解性实验以及细胞相容性测试考察了CNCs含量对OSA/CNCs/PAM-GT复合水凝胶结构和性能的影响。实验结果表明,CNCs能够与基体中的聚合物产生相互作用力。并且随着CNCs含量的增加,OSA/CNCs/PAM-GT 复合水凝胶的孔隙率下降,力学性能提高。而且它们的溶胀性和生物降解性虽然受CNCs含量增加而呈现下降的趋势,但是幅度较小,说明CNCs能够在一定程度上调控复合水凝胶的物化性能。同时,OSA/CNCs/PAM-GT 复合水凝胶展现出较好的细胞粘附、增殖和分化性能。当CNCs的含量在0.5%时,细胞增殖的效果最佳,而CNCs的含量为1.5%时,细胞分化效果最显著。因此,将CNCs掺杂到OSA/PAM互穿网络基体中能够有效地调控其生物性能,使其适用于生物医学领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号