首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The contamination of raw milk with Bacillus cereus spores was studied during the indoor confinement of dairy cattle. The occurrence of spores in fresh and used bedding material, air samples, feed, feces, and the rinse water from milking equipment was compared with the spore level in bulk tank milk on 2 farms, one of which had 2 different housing systems. A less extensive study was carried out on an additional 5 farms. High spore concentrations of >100 spores/L in the raw milk were found on 4 of the farms. The number of spores found in the feed, feces, and air was too small to be of importance for milk contamination. Elevated spore contents in the rinse water from the milking equipment (up to 322 spores/L) were observed and large numbers of spores were found in the used bedding material, especially in free stalls with >5 cm deep sawdust beds. At most, 87,000 spores/g were found in used sawdust bedding. A positive correlation was found between the spore content in used bedding material and milk (r = 0.72). Comparison of the genetic fingerprints obtained by the random amplified polymorphic DNA PCR of isolates of B. cereus from the different sources indicated that used bedding material was the major source of contamination. A separate feeding experiment in which cows were experimentally fed B. cereus spores showed a positive relationship between the number of spores in the feed and feces and in the feces and milk (r = 0.78). The results showed that contaminated feed could be a significant source of spore contamination of raw milk if the number of spores excreted in the feces exceeded 100,000/g.  相似文献   

2.
Spores of lactate-fermenting clostridia, known as butyric acid bacteria (BAB), can cause severe quality defects in semi-hard cheeses, called late-blowing. The routine detection method of BAB spores involves most probable number quantification of spores of anaerobic, gas-forming bacteria in a medium containing lactic acid. In this study, BAB spores were detected in 296 samples of soil, maize and grass silage, dairy cow faeces and farm tank milk collected from dairy farms in The Netherlands and the most abundant populations identified. Three major populations were detected, namely Clostridium tyrobutyricum, Clostridium beijerinckii and Paenibacillus spp. Paenibacillus polymyxa was the most abundant species of the latter group. The results indicate that the three spore populations share the same sources and the same contamination route of milk. In contrast to the Clostridium species, P. polymyxa isolates were unable to ferment lactate into butyrate. P. polymyxa spores are presumably unable to cause cheese defects.  相似文献   

3.
Thermoduric bacteria (TDB), including sporeformers and their spores, can be present in milk and dairy products even after pasteurization. They have the potential to adversely affect the quality and shelf life of products. The objectives of this study were to identify the origin and common species of heat-resistant bacteria occurring during summer and winter on Midwest dairy farms. Bulk tank milk samples were taken from 10 dairy farms located along the South Dakota section of Interstate 29, with herd sizes ranging from 650 to 3,500 lactating dairy cows. Milk samples were profiled for the prevalence of TDB and spore counts (SC). Corn silage samples and swabs of the milking clusters were also taken at the dairies to further profile the potential sources of TDB and SC. The samples were taken 3 times during 2 seasons [winter (January–March) and summer (June–August)] to track seasonal changes in the farm bacterial flora. During winter, the average TDB counts in bulk tank milk were 1.83 log compared with 1.89 log TDB counts in the summer. The SC was 0.85 log in the winter, which was about half the 1.37 log SC present in the summer season. Corn silage sampled in winter contained 4.09 log TDB count compared with an increased 5.85 log TDB count during summer sampling. Concentrations of SC in corn silage reached an average of 3.60 log in winter compared with 6.33 log for summer. The seasonal effect was evident with an increase in summer counts across the board for TDB and SC, both in the feed and bulk tank milk samples. Bacillus licheniformis was the predominant species identified in 62.4% of winter (85 total) and 49.4% of summer (83 total) samples. Bacillus subtilis made up 9.4% of the remaining winter isolates, followed by Bacillus sonorensis at 8.2%. Conversely, B. sonorensis made up 12% of the summer isolates followed by Bacillus pumilus at 10.8%. Bacillus licheniformis is a ubiquitous microbe and was isolated from both TDB and sporeformer categories in all 3 sample types. There were larger increases in SC than TDB, indicating that summer temperatures and conditions may favor proliferation of sporeforming bacteria over that of TDB. In conclusion, samples from bulk tank milk, milking cluster swabs, and corn silage samples at each of the 10 sites indicated that B. licheniformis was the major contaminant species, regardless of season. In this experiment, corn silage was the major environmental source of both TDB and SC with higher concentrations in summer when compared with winter.  相似文献   

4.
Thermoduric bacteria (TDB), including sporeformers and their spores, can be present in milk and dairy products even after pasteurization. They have the potential to adversely affect the quality and shelf life of products. The objectives of this study were to identify the origin and common species of heat-resistant bacteria occurring during summer and winter on Midwest dairy farms. Bulk tank milk samples were taken from 10 dairy farms located along the South Dakota section of Interstate 29, with herd sizes ranging from 650 to 3,500 lactating dairy cows. Milk samples were profiled for the prevalence of TDB and spore counts (SC). Corn silage samples and swabs of the milking clusters were also taken at the dairies to further profile the potential sources of TDB and SC. The samples were taken 3 times during 2 seasons [winter (January–March) and summer (June–August)] to track seasonal changes in the farm bacterial flora. During winter, the average TDB counts in bulk tank milk were 2.61 log compared with 2.76 log TDB counts in the summer. The SC was 1.08 log in the winter, which was half the 2.06 log SC present in the summer season. Corn silage sampled in winter contained a 7.57 log TDB count compared with an increased 10.77 log TDB count during summer sampling. Concentrations of SC in corn silage reached an average of 6.3 log in winter compared with 11.81 log for summer. The seasonal effect was evident with an increase in summer counts across the board for TDB and SC, both in the feed and bulk tank milk samples. Bacillus licheniformis was the predominant species identified in 62.4% of winter (85 total) and 49.4% of summer (83 total) samples. Bacillus subtilis made up 9.4% of the remaining winter isolates, followed by Bacillus sonorensis at 8.2%. Conversely, B. sonorensis made up 12% of the summer isolates followed by Bacillus pumilus at 10.8%. Bacillus licheniformis is a ubiquitous microbe and was isolated from both TDB and sporeformer categories in all 3 sample types. There were larger increases in SC than TDB, indicating that summer temperatures and conditions may favor proliferation of sporeforming bacteria over that of TDB. In conclusion, samples from bulk tank milk, milking cluster swabs, and corn silage samples at each of the 10 sites indicated that B. licheniformis was the major contaminant species, regardless of season. In this experiment, corn silage was the major environmental source of both TDB and SC with higher concentrations in summer when compared with winter.  相似文献   

5.
The occurrence of Bacillus and Paenibacillus spores in silage is of great concern to dairy producers because their spores can survive pasteurization and some strains are capable of subsequently germinating and growing under refrigerated conditions in pasteurized milk. The objectives of this study were to verify the role of aerobic deterioration of corn silage on the proliferation of Paenibacillus spores and to evaluate the efficacy of oxygen-barrier films used to cover silage during fermentation and storage to mitigate these undesirable bacterial outbreaks. The trial was carried out on whole-crop maize (Zea mays L.) inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium. A standard polyethylene film and a polyethylene-polyamide film with an enhanced oxygen barrier were used to produce the silage bags for this experiment. The silos were stored indoors at ambient temperature (18 to 22°C) and opened after 110 d. The silage was sampled after 0, 2, 5, 7, 9, and 14 d of aerobic exposure to quantify the growth of endospore-forming bacteria during the exposure of silages to air. Paenibacillus macerans (gram-positive, facultatively anaerobic bacteria) was able to develop during the aerobic exposure of corn silage. This species was present in the herbage at harvesting, together with clostridial spores, and survived ensiling fermentation; it constituted more than 60% of the anaerobic spore formers at silage opening. During silage spoilage, the spore concentration of P. macerans increased to values greater than 7.0 log10 cfu/g of silage. The use of different plastic films to seal silages affected the growth of P. macerans and the number of spores during aerobic exposure of silages. These results indicate that the number of Paenibacillus spores could greatly increase in silage after exposure to air, and that oxygen-barrier films could help to reduce the potential for silage contamination of this important group of milk spoilage microorganisms by delaying the onset of aerobic deterioration.  相似文献   

6.
A year-long survey of 24 dairy farms was conducted to determine the effects of farm management on the concentrations of butyric acid bacteria (BAB) spores in farm tank milk (FTM). The results were used to validate a control strategy derived from model simulations. The BAB spore concentrations were measured in samples of FTM, feces, bedding material, mixed corn and grass silage fed to cows in the barn, and soil. In addition, a questionnaire was used to gather farm management information such as bedding material used and teat cleaning method applied. The average BAB spore concentration in FTM was 2.7 log10 spores/L, and 33% of the FTM samples exceeded a concentration of 3 log10 spores/L. Control of the average spore concentration in mixed silage fed was the only aspect of farm management that was significantly related to the concentration of BAB spores in FTM. Farms that fed mixed silage with the lowest average BAB spore concentrations (3.4 log10 spores/g) produced FTM with the lowest average concentration (2.1 log10 spores/L). The efficiency of farm management in controlling the BAB spore concentration in FTM depended to a large extent on the ability of farmers to prevent incidents with elevated BAB spore concentrations in mixed silage (>5 log10 spores/g) and not on the average BAB spore concentration in mixed silage across the year. The survey showed that farmers should aim for a concentration in mixed silage of less than 3 log10 spores/g and should prevent the concentration from exceeding 5 log10 spores/g to ensure a concentration in FTM of less than 3 log10 spores/L. These results correspond with the previously reported model simulations.  相似文献   

7.
The shelf life of pasteurized dairy products depends partly on the concentration of Bacillus cereus spores in raw milk. Based on a translation of contamination pathways into chains of unit-operations, 2 simulation models were developed to quantitatively identify factors that have the greatest effect on the spore concentration in milk. In addition, the models can be used to determine the reduction in concentration that could be achieved via measures at the farm level. One model predicts the concentration when soil is the source of spores, most relevant during grazing of cows. The other model predicts the concentration when feed is the main source of spores, most relevant during housing of cows. It was estimated that when teats are contaminated with soil, 33% of the farm tank milk (FTM) contains more than 3 log10 spores/L of milk. When feed is the main source, this is only 2%. Based on the predicted spore concentrations in FTM, we calculated that the average spore concentration in raw milk stored at the dairy processor during the grazing period is 3.5 log10 spores/L of milk and during the housing period is 2.1 log10 spores/L. It was estimated that during the grazing period a 99% reduction could be achieved if all farms minimize the soil contamination of teats and teat cleaning is optimized. During housing, reduction of the concentration by 60% should be feasible by ensuring spore concentrations in feed below 3 log10 spores/g and a pH of the ration offered to the cows below 5. Implementation of these measures at the farm level ensures that the concentration of B. cereus spores in raw milk never exceeds 3 log10 spores/L.  相似文献   

8.
In a year-long survey on 24 Dutch farms, Bacillus cereus spore concentrations were measured in farm tank milk (FTM), feces, bedding material, mixed grass and corn silage, and soil from the pasture. The aim of this study was to determine, in practice, factors affecting the concentration of B. cereus spores in FTM throughout the year. In addition, the results of the survey were used in combination with a previously published modeling study to determine requirements for a strategy to control B. cereus spore concentrations in FTM below the MSL of 3 log10 spores/L. The B. cereus spore concentration in FTM was 1.2 ± 0.05 log10 spores/L and in none of samples was the concentration above the MSL. The spore concentration in soil (4.9 ± 0.04 log10 spores/g) was more than 100-fold higher than the concentration in feces (2.2 ± 0.05 log10 spores/g), bedding material (2.8 ± 0.07 log10 spores/g), and mixed silage (2.4 ± 0.07 log10 spores/g). The spore concentration in FTM increased between July and September compared with the rest of the year (0.5 ± 0.02 log10 spores/L difference). In this period, comparable increases of the concentrations in feces (0.4 ± 0.03 log10 spores/g), bedding material (0.5 ± 0.05 log10 spores/g), and mixed silage (0.4 ± 0.05 log10 spores/g) were found. The increased B. cereus spore concentration in FTM was not related to the grazing of cows. Significant correlations were found between the spore concentrations in FTM and feces (r = 0.51) and in feces and mixed silage (r = 0.43) when the cows grazed. The increased concentrations during summer could be explained by an increased growth of B. cereus due to the higher temperatures. We concluded that year-round B. cereus spores were predominantly transmitted from feeds, via feces, to FTM. Farmers should take measures that minimize the transmission of spores via this route by ensuring low initial contamination levels in the feeds (<3 log10 spores/g) and by preventing growth of B. cereus in the farm environment. In addition, because of the extremely high B. cereus spore concentrations in soil, the contamination of teats with soil needs to be prevented.  相似文献   

9.
《Journal of dairy science》2022,105(1):123-139
In this study, we investigated the variation in the microbial community present in bulk tank milk samples and the potential effect of different farm management factors. Bulk tank milk samples were collected repeatedly over one year from 42 farms located in northern Sweden. Total and thermoresistant bacteria counts and 16S rRNA gene-based amplicon sequencing were used to characterize microbial community composition. The microbial community was in general heterogeneous both within and between different farms and the community composition in the bulk tank milk was commonly dominated by Pseudomonas, Acinetobacter, Streptococcus, unclassified Peptostreptococcaceae, and Staphylococcus. Principal component analysis including farm factor variables and microbial taxa data revealed that the microbial community in milk was affected by type of milking system. Milk from farms using an automatic (robot) milking system (AMS) and loose housing showed different microbial community composition compared with milk from tiestall farms. A discriminant analysis model revealed that this difference was dependent on several microbial taxa. Among farms using an automatic milking system, there were further differences in the microbial community composition depending on the brand of the milking robot used. On tiestall farms, routines for teat preparation and cleaning of the milking equipment affected the microbial community composition in milk. Total bacteria count (TBC) in milk differed between the farm types, and TBC were higher on AMS than tiestall farms (log 4.05 vs. log 3.79 TBC/mL for AMS and tiestalls, respectively). Among tiestall farms, milk from farms using a chemical agent in connection to teat preparation and a more frequent use of acid to clean the milking equipment had lower TBC in milk, than milk from farms using water for teat preparation and a less frequent use of acid to clean the milking equipment (log 3.68 vs. 4.02 TBC/mL). There were no significant differences in the number of thermoresistant bacteria between farm types. The evaluated factors explained only a small proportion of total variation in the microbiota data, however, despite this, the study highlights the effect of routines associated with teat preparation and cleaning of the milking equipment on raw milk microbiota, irrespective of type of milking system used.  相似文献   

10.
Sporeforming bacteria are responsible for the spoilage of several dairy products including fluid milk, cheese, and products manufactured using dried dairy powders as ingredients. Sporeforming bacteria represent a considerable challenge for the dairy industry because they primarily enter the dairy product continuum at the farm, survive processing hurdles, and subsequently grow in finished products. As such, strategies to reduce spoilage due to this group of bacterial contaminants have focused on understanding the effect of farm level factors on the presence of spores in bulk tank raw milk with the goal of reducing spore levels in raw milk, as well as understanding processing contributions to spore levels and outgrowth in finished products. The goal of the current study was to investigate sources of spores in the farm environment and survey farm management practices to identify variables using multimodel inference, a model averaging approach that eliminates the uncertainty of traditional model selection approaches, that affect the presence and levels of spores in bulk tank raw milk. To this end, environmental samples including feed, bedding, manure, soil, water, and so on, and bulk tank raw milk were collected twice from 17 upstate New York dairy farms over a 19-mo period and the presence and levels of various spore types (e.g., psychrotolerant, mesophilic, thermophilic, highly heat resistant thermophilic, specially thermoresistant thermophilic, and anaerobic butyric acid bacteria) were assessed. Manure had the highest level of spores for 4 out of 5 aerobic spore types with mean counts of 5.87, 5.22, 4.35, and 3.68 log cfu/g of mesophilic, thermophilic, highly heat resistant thermophilic, and specially thermoresistant thermophilic spores, respectively. In contrast, bulk tank raw milk had mean spore levels below 1 log cfu/mL across spore types. Multimodel inference was used to determine variables (i.e., management factors, environmental spore levels, and meteorological data from each sampling) that were important for presence or levels of each spore type in bulk tank raw milk. Analyses indicated that variables of importance for more than one spore type included the residual level of spores in milk from individual cows after thorough teat cleaning and forestripping, udder hygiene, clipping or flaming of udders, spore level in feed commodities, spore level in parlor air, how often bedding was topped up or changed, the use of recycled manure bedding, and the use of sawdust bedding. These results improve our understanding of how spores transfer from environmental sources into bulk tank raw milk and provide information that can be used to design intervention trials aimed at reducing spore levels in raw milk.  相似文献   

11.
The aim of the study was to investigate the effects of season, cow cleanliness and milking routine on bacterial and somatic cell counts of bulk tank milk. A total of 22 dairy farms in Lombardy (Italy) were visited three times in a year in different seasons. During each visit, samples of bulk tank milk were taken for bacterial and somatic cell counts; swabs from the teat surface of a group of cows were collected after teat cleaning and before milking. Cow cleanliness was assessed by scoring udder, flanks and legs of all milking cows using a 4-point scale system. Season affected cow cleanliness with a significantly higher percentage of non-clean (NC) cows during Cold compared with Mild season. Standard plate count (SPC), laboratory pasteurization count (LPC), coliform count (CC) and somatic cell count, expressed as linear score (LS), in milk significantly increased in Hot compared with Cold season. Coagulase-positive staphylococci on teat swabs showed higher counts in Cold season in comparison with the other ones. The effect of cow cleanliness was significant for SPC, psychrotrophic bacterial count (PBC), CC and Escherichia coli in bulk tank milk. Somatic cell count showed a relationship with udder hygiene score. Milking operation routine strongly affected bacterial counts and LS of bulk tank milk: farms that accomplished a comprehensive milking scheme including two or more operations among forestripping, pre-dipping and post-dipping had lower teat contamination and lower milk SPC, PBC, LPC, CC and LS than farms that did not carry out any operation.  相似文献   

12.
This cross-sectional study determined the prevalence of Listeria spp. in bulk-tank milk on dairy farms in the region of Galicia in northwest Spain. The aim was to identify management practices associated with the presence of Listeria spp. and possible effects on milk hygienic quality. A total of 98 farms was randomly selected on the basis of an expected prevalence of 6.5% for Listeria monocytogenes from 20,107 dairy farms in the region. Bulk-tank milk samples were obtained from 98 farms, fecal samples from lactating cows from 97 farms, and silage samples from 83 farms. Listeria monocytogenes was detected in 6.1, 9.3, and 6.0% of these samples, respectively. Statistical analyses confirmed the relationship between low silage quality (as indicated by high pH) and presence of Listeria spp. in silage (29.5 vs. 6.2% for pH above or below 4.5, respectively). Only milking system [tie-stall systems (28.6%) vs. parlor milking (10%)] and inadequately controlled milking order [yes (32.0%) vs. no (10.7%)] had statistically significant effects on management practices for increasing the risk of Listeria contamination of bulk-tank milk.  相似文献   

13.
The ability of certain spore-forming bacteria in the order Bacillales (e.g., Bacillus spp., Paenibacillus spp.) to survive pasteurization in spore form and grow at refrigeration temperatures results in product spoilage and limits the shelf life of high temperature, short time (HTST)-pasteurized fluid milk. To facilitate development of strategies to minimize contamination of raw milk with psychrotolerant Bacillales spores, we conducted a longitudinal study of 10 New York State dairy farms, which included yearlong monthly assessments of the frequency and levels of bulk tank raw milk psychrotolerant spore contamination, along with administration of questionnaires to identify farm management practices associated with psychrotolerant spore presence over time. Milk samples were first spore pasteurized (80°C for 12 min) and then analyzed for sporeformer counts on the initial day of spore pasteurization (SP), and after refrigerated storage (6°C) for 7, 14, and 21 d after SP. Overall, 41% of samples showed sporeformer counts of >20,000 cfu/mL at d 21, with Bacillus and Paenibacillus spp. being predominant causes of high sporeformer counts. Statistical analyses identified 3 management factors (more frequent cleaning of the bulk tank area, the use of a skid steer to scrape the housing area, and segregating problem cows during milking) that were all associated with lower probabilities of d-21 Bacillales spore detection in SP-treated bulk tank raw milk. Our data emphasize that appropriate on-farm measures to improve overall cleanliness and cow hygiene will reduce the probability of psychrotolerant Bacillales spore contamination of bulk tank raw milk, allowing for consistent production of raw milk with reduced psychrotolerant spore counts, which will facilitate production of HTST-pasteurized milk with extended refrigerated shelf life.  相似文献   

14.
Paenibacillus spp. are spore-forming bacteria that adversely affect the quality of dairy products. There is currently no appropriate method for enumerating Paenibacillus spp. spores. We developed a simple membrane filtration method to enumerate Paenibacillus spp. spores in raw milk, using β-galactosidase activity as a selection criterion. Although Paenibacillus spp. spores are relatively small, use of a membrane filter with 0.65-μm pore size allowed us to easily filter raw milk with sufficient recovery. The membrane was put on plates containing X-gal, and detection of β-galactosidase-positive colonies enabled selective enumeration of Paenibacillus spp. spores. We investigated Paenibacillus spp. spore levels in raw milk from six different areas in the Tokachi region, Hokkaido, Japan over 1 year. There were ≤10 spores 100 mL−1 throughout the year, with no significant differences between areas or seasons. Paenibacillus amylolyticus and Paenibacillus odorifer were the predominant species, accounting for 50.6% and 27.4% of the total spores, respectively.  相似文献   

15.
《Journal of dairy science》2019,102(8):6885-6900
Mesophilic and thermophilic spore-forming bacteria represent a challenge to the dairy industry, as these bacteria are capable of surviving adverse conditions associated with processing and sanitation and eventually spoil dairy products. The dairy farm environment, including soil, manure, silage, and bedding, has been implicated as a source for spores in raw milk. High levels of spores have previously been isolated from bedding, and different bedding materials have been associated with spore levels in bulk tank (BT) raw milk; however, the effect of different bedding types, bedding management practices, and bedding spore levels on the variance of spore levels in BT raw milk has not been investigated. To this end, farm and bedding management surveys were administered and unused bedding, used bedding, and BT raw milk samples were collected from dairy farms (1 or 2 times per farm) across the United States over 1 yr; the final data set included 182 dairy farms in 18 states. Bedding suspensions and BT raw milk were spore pasteurized (80°C for 12 min), and mesophilic and thermophilic spores were enumerated. Piecewise structural equation modeling analysis was used to determine direct and indirect pathways of association among farm and bedding practices, levels of spores in unused and used bedding, and levels of spores in BT raw milk. Separate models were constructed for mesophilic and thermophilic spore levels. The analyses showed that bedding material had a direct influence on levels of spores in unused and used bedding as well as an indirect association with spore levels in BT raw milk through used bedding spore levels. Specific bedding and farm management practices as well as cow hygiene in the housing area were associated with mesophilic and thermophilic spore levels in unused bedding, used bedding, and BT raw milk. Notably, levels of spores in used bedding were positively related to those in unused bedding, and used bedding spore levels were positively related to those in BT raw milk. The results of this study increase the understanding of the levels and ecology of mesophilic and thermophilic spores in raw milk, emphasize the possible role of bedding as a source of spores on-farm, and present opportunities for dairy producers to reduce spore levels in BT raw milk.  相似文献   

16.
Changes in milk quality after the introduction of automatic milking systems on 28 Dutch dairy farms were examined and observations were compared with milk quality characteristics on two groups of farms milking either two (49 farms) or three times (28 farms) per day in a conventional milking parlor. Milk quality data were collected from January 1996 until March 1998. The farms with an automatic milking system are pioneers and cannot be considered representative of Dutch dairy farms. After the introduction of the automatic milking system, a statistically significant increase in total bacterial plate count and in free fatty acids was observed. Total bacterial plate count, free fatty acids, and freezing point were higher on farms using the automatic milking system than in the other two groups of farms. Somatic cell counts did not change after the introduction of the automatic milking system, but were already rather high in herds using the automatic milking system compared with the other groups of farms. The introduction of automatic milking systems used in the study resulted in a decrease in milk quality compared with conventional systems.  相似文献   

17.
We previously reported that milk production in dairy cows was increased by adding a specific xylanase-rich exogenous fibrolytic enzyme (XYL) to a total mixed ration (TMR) containing 10% bermudagrass silage (BMD). Two follow-up experiments were conducted to examine whether adding XYL would increase the performance of dairy cows consuming a TMR containing a higher (20%) proportion of BMD (Experiment 1) and to evaluate the effects of XYL on in vitro fermentation and degradability of the corn silage, BMD, and TMR (Experiment 2). In Experiment 1, 40 lactating Holstein cows in early lactation (16 multiparous and 24 primiparous; 21 ± 3 d in milk; 589 ± 73 kg of body weight) were blocked by milk yield and parity and randomly assigned to the Control and XYL treatments. The TMR contained 20% BMD, 25% corn silage, 8% wet brewer's grain, and 47% concentrate mixture in the dry matter (DM). Cows were fed the XYL-treated or untreated experimental TMR twice per day for 10 wk after a 9-d covariate period. In Experiment 2, ruminal fluid was collected from 3 cannulated lactating Holstein cows fed a diet containing 20% bermudagrass haylage, 25% corn silage and 55% concentrate. In Experiment 1, compared with Control, application of XYL did not affect DM intake (24.0 vs. 23.7 kg/d), milk yield (35.1 vs. 36.2 kg/d), fat-corrected milk yield (36.1 vs. 36.9 kg/d), or yields of milk fat (1.29 vs. 1.31 kg/d) or protein (1.07 vs. 1.08 kg/d). However, intake of neutral detergent fiber (4.67 vs. 4.41 kg/d) tended to increase with XYL; consequently, milk protein concentration was increased by XYL (3.02 vs. 2.95%). Feed efficiency tended to be lower in cows fed XYL (1.57 vs. 1.52 kg of fat-corrected milk/kg of DM intake) compared with Control. In Experiment 2, XYL tended to increase the rate of gas production in the TMR, the molar proportion of propionate for corn silage, and that of valerate for the TMR. In addition, XYL increased in vitro DM, neutral detergent fiber, and acid detergent fiber degradability of BMD and corn silage. Application of XYL to a diet with a relatively high proportion of BMD tended to increase digestible neutral detergent fiber intake, increased milk protein concentration, and in vitro degradability of DM, neutral detergent fiber, and acid detergent fiber. However, XYL did not affect milk production and tended to decrease feed efficiency in early lactation cows.  相似文献   

18.
Different teat-cleaning methods were evaluated to determine their effect on the presence of spores from anaerobic bacterial spore-formers in the milk. Artificial contamination was used to achieve uniform contamination of teats to reduce the number of cows and samples needed in the experiments and still obtain adequate power to detect differences among tested methods. Teats were contaminated experimentally with a large amount of Clostridium tyrobutyricum spores in a manure-water slurry. Various types of dry and moistened towels and different combinations of methods using soap or 2 types of towels, together with cleaning times of 10 or 20 s, were compared in 2 Latin square-designed experiments with 7 cows, 7 treatments, and 4 replications in each experiment. In comparison with control (no cleaning and no forestripping), cleaning teats with dry paper towels for 10 s reduced concentration of spores in milk by 45 to 50%. A 50 to 74% reduction was achieved using different types of moist towels for 10 s. Methods using 2 towels, soap, or a longer cleaning time reduced bacterial contamination by 85 to 91%. The most effective methods in reducing milk spore content (96% reduction) were use of a moist washable towel with or without soap followed by drying with a dry paper towel, for a total time of 20 s per cow. One of the best cleaning methods was studied in an additional experiment to determine the effect of different teat contamination mixtures. The Latin square-designed experiment with 8 cows, 8 treatments, and 2 replications showed that cleaning was independent of the tested contamination matrix (manure, soil, or sawdust), type of spores (Cl. tyrobutyricum and Bacillus cereus), or degree of contamination (manure or extra manure).  相似文献   

19.
Spores of psychrotrophic Bacillus spp were isolated from 58% of farm bulk tank milks and about 69% of pasteurized milks. Counts of Bacillus spp in about 10% of raw milk samples reached 1 × 105 cfu/ml and above within seven days at 6°C. Psychrotrophic spore counts in pasteurized milks ranged from <0.5 to 170 spores/litre with an average of about 17/1. There was little correlation between the total bacterial count of the raw milk and presence of psychrotrophic Bacillus spores. There was some evidence that the bulk tank itself may be a source of contamination. The spores in pasteurized milk probably were not the result of postpasteurization contamination. The optimum germination temperature for psychrotrophic Bacillus spores was lower than that for spores of mesophilic strains. About 50% of the psychrotrophic Bacillus strains isolated from milk were capable of growth at 2°C.  相似文献   

20.
The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage (C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose (4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat (3.094), somatic cell count (log10: 2.11), change in body weight (+7.8 kg), and condition score (+0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号