首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In today's digital age, the need and interest in personal and portable electronics shows a dramatic growth trend in daily life parallel to the developments in sensors technologies and the internet. Wearable electronics that can be attached to clothing, accessories, and the human body are one of the most promising subfields. The energy requirement for the devices considering the reduction in device sizes and the necessity of being flexible and light, the existing batteries are insufficient and nanogenerators have been recognized a suitable energy source in the last decade. The mechanical energy created by the daily activities of the human body is an accessible and natural energy source for nanogenerators. Fiber-structured functional materials contribute to the increase in energy efficiency due to their effective surface to volume ratio while providing the necessary compatibility and comfort for the movements in daily life with its flexibility and lightness. Among the potential solutions, electrospinning stands out as a promising technique that can meet these requirements, allowing for simple, versatile, and continuous fabrication. Herein, wearable electronics and their future potential, electrospinning, and its place in energy applications are overviewed. Moreover, piezoelectric, triboelectric, and hybrid nanogenerators fabricated or associated with electrospun fibrous materials are presented.  相似文献   

2.
In recent years, wearable sensors and energy harvesters have shown great potential for a wide range of applications in personalized healthcare, robotics, and human–machine interfaces. Among different types of materials used in wearable electronics, piezoelectric materials have gained enormous attention due to their exclusive ability to harvest energy from ambient sources. Piezoelectric materials can be utilized as sensing elements in wearable sensors while harvesting biomechanical energy. Electrospun piezoelectric polymer nanofibers are extensively investigated due to their high flexibility, ease of processing, biocompatibility, and higher piezoelectric property (in contrast to their corresponding cast films). However, as compared to piezoceramic materials, they mostly exhibit relatively lower piezoelectric coefficients. Therefore, considerable efforts have been devoted to improving the piezoelectricity of electrospun polymer nanofibers recently, resulting in significant advances. This review presents a broad overview of these advances including new material, structure designs as well as new strategies to enhance piezoelectricity of electrospun polymer nanofibers. The challenges in achieving high mechanical performance as well as high piezoelectricity are particularly discussed. The main motivation of this review is to examine these challenges and highlight effective approaches to achieving high-performance piezoelectric sensors and energy harvesters for wearable technologies.  相似文献   

3.
Summary: Electrospinning of polymer blends offers the potential to prepare functional nanofibers for use in a variety of applications. This work focused on control of the internal morphology of nanofibers prepared by electrospinning polymer blends to obtain core‐sheath structures. Polybutadiene/polystyrene, poly(methylmethacrylate)/polystyrene, polybutadiene/poly(methylmethacrylate), polybutadiene/polycarbonate, polyaniline/polycarbonate, and poly(methylmethacrylate)/polycarbonate blends were electrospun from polymer solutions. It was found that the formation of core‐sheath structures depends on both thermodynamic and kinetic factors. Incompatibility and large solubility parameter difference of the two polymers is helpful for good phase separation, but not sufficient for the formation of core‐sheath structures. Kinetic factors, however, play a much more important role in the development of the nanofiber morphology. During the electrospinning process, the rapid solvent evaporation requires systems with high molecular mobility for the formation of core‐sheath structures. It was found that polymer blends with lower molecular weight tend to form core‐sheath structures rather than co‐continuous structures, as a result of their higher molecular mobility. Rheological factors also affect the internal phase morphology of nanofibers. It was observed the composition with higher viscosity was always located at the center and the composition with lower viscosity located outside.

TEM image of electrospun polybutadiene/polycarbonate nanofibers at 25/75 wt.‐% ratio after staining by osmium tetroxide. The dark regions are polybutadiene and the light region is polycarbonate.  相似文献   


4.
尹桂波  张幼珠 《精细化工》2006,23(9):882-886
静电纺丝获得的丝素纳米级纤维可作为细胞培养支架,用于纺丝工艺及后处理能改变丝素微细结构,影响其水溶性和力学性能。本文采用XRD、FTIR、固态13CNMR和DSC研究了不同工艺下丝素纳米纤维及经甲醇处理后的微细结构,比较了不同微细结构下的水溶性和力学性能。结果表明,电纺丝的微细结构受纺丝工艺影响,高电压、纺丝液中丝素质量分数大时纺得的电纺丝结晶度高,经甲醇处理后,β化程度提高;w(丝素)=11%、15%时制备的电纺丝断裂强度分别为8.5、11.9 cN/mm;w(丝素)=11%、19%,水溶性由51.2%下降到43.3%;w(丝素)=19%、电压32 kV制得的电纺丝甲醇处理前后水溶性从43.3%下降到6.6%,说明丝素纳米纤维结晶度提高,强度增加、水溶性下降,满足了细胞支架的要求。  相似文献   

5.
This paper presents for the first time that poly(l ‐lactic acid) (PLLA) nanofibers can show the piezoelectricity along the fiber direction (d33) by using an electrospinning method. First, the electrospun fiber bundles are characterized by scanning electron microscope, X‐ray, and piezoelectric coefficient measurements. The data show that the supercritical CO2 treatment can greatly enhance the piezoelectricity of electrospun PLLA fibers, which can be resulting from the increased crystallinity of the fibers. Later, it is found that the electrospun PLLA fiber can generate a current of 8 pA and a voltage of 20 mV by a simple push–release process. Further, a single PLLA fiber‐based blood pulse sensor is also fabricated and tested and shows around a 2 pA output for blood pulse. Due to easy fabrication and relatively simple structure, this device enables a broad range of promising future applications in the medical sensor area.

  相似文献   


6.
The controlled deposition of electrospun nanofibers at the micro‐scale is studied. Several collectors with microscopic patterns are prepared using photolithography. Nanofiber deposition is influenced by the geometry, the size, and the distance between micro‐patterns. Within certain conditions, membranes with multiple “micro spider‐webs” or perpendicularly interconnected microgrids are obtained. Dielectric micro‐holes having a conductive bottom can be filled by the nanofiber. This kind of micro‐molding is rationalized using simulations that show the influence of the collector relative permittivity on the electric field at the pattern vicinity. “Micro‐woven” membranes of PCL with good mechanical properties can be produced, allowing their use for biomedical applications in tissue engineering.

  相似文献   


7.
Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.  相似文献   

8.
Highly‐aligned luminescent electrospun nanofibers were successfully prepared from two binary blends of PFO/PMMA and PF+/PMMA. The PFO/PMMA aligned electrospun fibers showed a core/shell structure but the PF+/PMMA fibers exhibited periodic aggregate domains in the fibers. The aligned fibers had polarized steady‐state luminescence with a polarized ratio as high as 4, much higher than the non‐woven electrospun fibers or spin‐coated film. Besides, the PF+/PMMA aligned electrospun fibers showed an enhanced sensitivity to plasmid DNA. Such aligned electrospun fibers could have potential applications in optoelectronic or sensory devices.

  相似文献   


9.
10.
Triboelectric nanogenerator (TENG), a green energy harvester, can harvest mechanical energy from human motion to electric energy to be applied in wearable electronics and sensor network. Porous materials played an important role in enhancing electric performance of TENG. In this paper, Azobisisobutyronitrile (AIBN) is used as a self‐reactive agent to modify Polydimethylsiloxane (PDMS) to form a self‐assembled porous structure (PDMS‐N10 film) through the difference in temperature between PDMS pre‐curing and AIBN decomposition. The PDMS‐N10‐based TENG exhibits a 2.5‐fold and 2.7‐fold improvement in output voltage and current as compared with PDMS without modification respectively. In addition, 116 light‐emitting diodes could be lighted up and 22 µF capacitor is charged. The TENG is also used as a sensor or trigger device for sensing the movements of elbow, knee, wrist, or finger, which can be applied in wearable devices because of the flexibility and durability as well as low cost.  相似文献   

11.
Electrospun functionalized polyacrylonitrile grafted glycidyl methacrylate (PAN‐g‐GMA) nanofibers are incorporated between the plies of a conventional carbon fiber/epoxy composite to improve the composite's mechanical performance. Glycidyl methacrylate (GMA) is successfully grafted onto polyacrylonitrile (PAN) polymer powder via a free radical mechanism. Characterization of the electrospun PAN and PAN‐g‐GMA nanofibers indicates that the grafting of GMA does not significantly alter the tensile properties of the PAN nanofibers but results in an increase in the diameter of nanofibers. Statistical analysis of the mechanical characterization studies on PAN‐carbon/epoxy hybrid composites conclusively shows that the composite reinforced with functionalized PAN nanofibers has greater mechanical properties than that of both the neat PAN nanofiber enriched hybrid composite and control composite (without nanofibers). The improved performance is attributed to the grafted glycidyl groups on PAN, leading to stronger interactions between the nanofibers and the epoxy matrix. PAN‐g‐GMA nanofiber reinforced composite outperforms their neat PAN counterparts in tensile strength, short beam shear strength, flexural strength, and Izod impact energy absorption by 8%, 9%, 6%, and 8%, respectively. Compared to the control composite, the improvements resulting from the PAN‐g‐GMA nanofiber incorporation are even more pronounced at 28%, 41%, 32%, and 21% in the corresponding tests, respectively.

  相似文献   


12.
Curdlan (β‐1,3 glucan) (7 wt%) with polyvinyl alcohol (PVA) (10 wt%) is blended at 1:2 weight ratio and electrospun to get nanofibers and is crosslinked with glutaraldehyde vapor to make it insoluble in water. It has a fiber diameter of less than 100 nm and is hydrophilic (contact angle = 35°). It is biodegradable (10% in 14 d) and also has a good swelling behavior (≈170%). More than 100% of L6 cells are viable on this scaffold after 3 d. The scanning electron microscope images also reveal that cells are able to attach and spread in the nanofibrous scaffolds. In vitro scratch assay indicates that the wound closure rate of curdlan/PVA scaffold is better than PVA scaffold probably due to the immunomodulatory properties of the biopolymer. Thus our results indicate that curdlan/PVA scaffold can be an ideal material for wound healing applications.

  相似文献   


13.
Piezoelectric polymers are potential energizers for wearable electronics due to the possibility of developing their yarns for various textile products. The present study is aimed at understanding the effect of geometrical parameters, viz., yarn linear density (measured as Tex), twist per meter (TPM), plying, as well as weft and warp density on the piezoelectric voltage of electrospun yarns of polyvinylidene fluoride (PVDF) polymer and poly[(vinylidene fluoride)-co-trifluoroethylene] [P(VDF-TrFE)] copolymer. Yarns are developed by twisting and plying electrospun nanofibers and their mechanical and piezoelectric properties are systematically investigated. Relative advantages of the yarns of the copolymer with respect to PVDF in both aligned and random fiber geometries are evaluated. The studies show that piezoresponse of the woven nanogenerators can be enhanced by decreasing Tex and increasing the TPM, the plying number, and the fabric density. A record piezovoltage of ≈2.5 V is achieved through this work. The results of the present work can be used for the fabrication of flexible and breathable nanogenerators or sensors.  相似文献   

14.
Polyvinylidene fluoride (PVDF) is a piezo‐polymer which among its crystalline phases, the β‐phase has been researched for the improvement of piezoelectric properties. In this study, to improve the β‐phase contents and thereby the piezoelectric response of the polymer, the effect of adding self‐synthesized ionic liquid surfactant (ILS) in PVDF nanofibers is studied. This material is added in different weight percentages into the PVDF solution and the nanofibers are produced by electrospinning to prepare active piezoelectric thin layers. SEM, XRD, FTIR, and piezo‐tests are employed for assessing the effect of the ILS on the enhancement of β‐phase in electrospun nanofibers and their piezoelectric performance. The results indicate ≈98.6% β‐phase formation in the sample containing 4 wt% ILS and in comparison with the pure nanofibers, the output voltage and its power density are improved 186.9% and 275%, respectively. Considering the results, it is suggested that the ILS can improve the piezoelectric response of the polymer in the fabricated structure by simple mixing in solution compared to other additives.  相似文献   

15.
Polyimides (PIs) possess excellent mechanical properties, thermal stability, and chemical resistance and can be converted to carbon materials by thermal carbonization. The preparation of carbon nanomaterials by carbonizing PI‐based nanomaterials, however, has been less studied. In this work, the fabrication of PI nanofibers is investigated using electrospinning and their transformation to carbon nanofibers. Poly(amic acid) carboxylate salts (PAASs) solutions are first electrospun to form PAAS nanofibers. After the imidization and carbonization processes, PI and carbon nanofibers can then be obtained, respectively. The Raman spectra reveal that the carbon nanofibers are partially graphitized by the carbonization process. The diameters of the PI nanofibers are observed to be smaller than those of the PAAS nanofibers because of the formation of the more densely packed structures after the imidization processes; the diameters of the carbon nanofibers remain similar to those of the PI nanofibers after the carbonization process. The thermal dissipation behaviors of the PI and carbon nanofibers are also examined. The infrared images indicate that the transfer rates of thermal energy for the carbon nanofibers are higher than those for the PI nanofibers, due to the better thermal conductivity of carbon caused by the covalent sp2 bonding between carbon atoms.  相似文献   

16.
Aligned and unaligned vanadium (IV) oxide meso-tetraphenyl porphine (VMP)/polyethylene oxide (PEO) hybrid nanofibers have been successfully synthesized by electrospinning technique. The nanofibers were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), optical microscopy and scanning electron microscopy (SEM). The SEM and AFM analyses of the morphology showed that the nanofibers are cylindrical with diameters ranging from 400–700 nm. The AFM analysis also confirmed that the aligned nanofibers deposited on a small metallic spring are smoother than the unaligned ones deposited on FTO. FTIR analysis showed that the polar environment provided by the phenyl groups of VMP molecules modified the chemical configuration of PEO molecules, and XRD studies indicated that the VMP molecules were homogeneously distributed within the PEO matrix.  相似文献   

17.
(Na1?xKx)NbO3 (NKN) platelets synthesized at 600°C for 12 h have an Amm2 orthorhombic structure. However, the structure of NKN platelets synthesized at 500°C is a mixture of R3m rhombohedral and Amm2 orthorhombic structures. The formation of a rhombohedral structure is attributed to the presence of OH? and H2O defects in the NKN platelets. The piezoelectric strain constant (d33) of NKN platelets synthesized at 600°C for 12 h is 100 pmV?1, whereas that of NKN platelets synthesized at 500°C is lesser (50 pmV?1) due to the presence of these defects. Piezoelectric nanogenerators (PNGs) are fabricated using composites consisting of NKN platelets and polydimethylsiloxane. A large output voltage of 25 V and output current of 2.7 μA were obtained for the PNG with NKN platelets synthesized at 600°C for 6 h. This PNG shows a high output electrical energy of 3.0 μW at an external load of 5.1 MΩ.  相似文献   

18.
Wearable electronics, sensors, and energy harvesting devices are gaining an ever increasing importance in consumer products. Their success is, however, contingent on the availability of flexible and cost‐effective functional materials. The present paper presents an up‐scaled processing route for 0–3 thick film composites of the ferroelectric polymer polyvinylidenefluoride‐trifluoroethylene and a relaxor ceramic. Different compositions are investigated for pyro‐ and piezoelectric applications. Various samples are produced via tape casting and spin‐coating as freestanding and supported films of up to 600 × 200 mm² and on 150 mm silicon wafers, respectively. The samples are characterized in terms of thickness and roughness reproducibility, mechanical properties, and impedance. It is shown that good reproducibility and quality of the films can be realized. Depending on the application targeted (pyroelectric or piezoelectric), specific compositions together with the suitable poling process are presented. For instance, a composite with 24 vol% ceramic shows highest pyroelectric properties together with lowest piezoelectric thickness coefficient (d33) when poled for pyroelectric applications. On the other hand, a composite with 50 vol% ceramic exhibits a d33 of 100 pm V?1 that is unsurpassed for this type of composites. These properties are advantageous in a large variety of applications, including wearable devices.  相似文献   

19.
以聚乙烯吡咯烷酮(PVP)和Ga(NO3)3为前驱体,利用静电纺丝和热处理技术制备了直径在100~300 nm左右的单斜结构的Ga2O3纳米纤维,并通过氨气氮化技术制备了GaN纳米纤维。XRD结果表明GaN样品为六方纤锌矿结构,且最佳氮化温度为850℃,氮化时间为2 h。Raman光谱发生了红移,并再次确定了GaN样品的结构,TGA结果表明GaN纤维在700℃以下在空气和氮气气氛下具有较好的稳定性,SEM和TEM表明纤维直径大约在100~200 nm之间,光催化测试表明GaN纤维对罗丹明6G有很好的降解效果。  相似文献   

20.
This work reports the precise diameter control of electrospun yttria‐stabilized zirconia (YSZ) nanofibers from 200 to 900 nm after calcination. Fabricated YSZ nanofibers showed porous nanocrystalline structures with high aspect ratios of more than 500:1 and high surface‐to‐volume ratios with a specific surface area of 43.32 m2/g. The diameter of the YSZ nanofibers increased with the viscosity of the precursor solution, which was controlled by the concentrations of either polymers (polyacrylonitrile) or ceramic precursors (YSZ). We present a modified correlation between the diameter of a nanofiber and the synthetic conditions, as the observed behavior for calcined ceramic nanofibers deviated from the expected behavior. Our results demonstrate a modified but simple approach to fabricate ceramic nanofibers with desired diameters, providing a new design guideline for many electrochemical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号