首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herein, direct 4D printing of thermoresponsive shape memory polymers (SMPs) by the fused deposition modeling (FDM) method that enables programing of 2D objects during printing for autonomous 2D-to-3D shape transformations via simply heating is focused on. The programming process during printing is investigated through designs and experiments. The capability of programming SMPs during printing is illustrated by prestrain and bending capabilities, which are highly related to printing settings, such as nozzle temperature, print speed, layer height, infill patterns, and ratio of active parts in a bilayer structure. A nearly linear relationship for prestrain and bending parameters is experimentally revealed for different printing factors. Quantitative results are presented to be used as a guidance for designing complex 3D structures via 4D printing of 2D structures. Helix structure, twisting structure, DNA-like structures, and functional gripper are designed to demonstrate the potential of direct FDM 4D printing for creating complex 3D structures from simple 2D structures with advantages over traditional manufacturing methods. It is shown that, by removing the need for a layer-by-layer stacking process to achieve a complex 3D shape, FDM can promote sustainability via 4D printing of autonomous 2D-to-3D shape transformer structures with lower materials, time, energy, and longer service life.  相似文献   

2.
3D Printed Photoresponsive Devices Based on Shape Memory Composites   总被引:1,自引:0,他引:1       下载免费PDF全文
Compared with traditional stimuli‐responsive devices with simple planar or tubular geometries, 3D printed stimuli‐responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics.  相似文献   

3.
There are a few shape memory polymers (SMPs) like polylactic acid (PLA) and polyurethane (PU) that are 4D printable, and other SMPs must be synthesized with a complicated chemical lab effort. Herein, considering dual-material extrusion printing and microscopic mechanism behind shape memory effect (SME), bilayer-encapsulated polycaprolactone (PCL)–thermoplastic polyurethane (TPU) shape memory composite structures are 4D printed for the first time. The SME performance is investigated by assessing fixity, shape recovery, stress recovery, and stress relaxation under bending and compression loading modes. PCL, TPU, and melting temperature of PCL play the role of switching phase, net point, and transition temperature, respectively. Due to the destruction and dripping of molten PCL in contact with water, PCL is encapsulated by TPU. Encapsulation successfully solves the challenge of bonding/interface between printed layers, and the results show that the SME performance of the encapsulated structures is higher than bilayer PCL–TPU one's. Experiments reveal that maximum stress recovery in 4D-printed composites remains constant over time. This is a great achievement compared to the previous extrusion-based SMP structures that have great weakness in stress relaxation due to weak and low crystalline fractions and the unraveling of molecular entanglements in semicrystalline and amorphous thermoplastic SMPs, respectively.  相似文献   

4.
Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro‐electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others.  相似文献   

5.
6.
4D printing is a novel approach that enables dynamic functionality in ordinary static object. We used a methacrylated semicrystalline polymer to print objects exhibiting thermally triggered shape memory behaviour. By exploring various molecular weights, it was found that a methacrylated polycaprolactone polymer with a number average molecular weight of 10,000?g?mol?1 exhibited the best thermal and mechanical behaviour. The effect of dyes’ addition to the ink formulation on the photopolymerisation and on the printing processes was evaluated. The ink was utilised for demonstrating fabrication of dynamic jewellery and a shoe accessory by Digital Light Processing printing.  相似文献   

7.
The radical shift in 3D printing to fabricate soft active materials such as shape memory polymers (SMPs) has brought along other techniques in realising 4D printing. Stereolithography (SL) process has recently been one of the popular systems for printing SMPs. In this paper, the curing characteristics and behaviour of the SMPs fabricated via projection-type and laser-scanning-type SL process were analysed. Factors such as the UV exposure of the projection type and variation in resin compositions have significant differences in terms of energy density and curing depths when compared to the laser scanning type. Hence, theoretical calculations were made to determine the critical energy density and threshold penetration depth attainable, which enables newly developed SMP materials to be successfully printable using different types of UV-based 3D printing systems.  相似文献   

8.
3D printing has witnessed a new era in which highly complexed customized products become reality. Realizing its ultimate potential requires simultaneous attainment of both printing speed and product versatility. Among various printing techniques, digital light processing (DLP) stands out in its high speed but is limited to intractable light curable thermosets. Thermoplastic polymers, despite their reprocessibility that allows more options for further manipulation, are restricted to intrinsically slow printing methods such as fused deposition modeling. Extending DLP to thermoplastics is highly desirable, but is challenging due to the need to reach rapid liquid–solid separation during the printing process. Here, a successful attempt at DLP printing of thermoplastic polymers is reported, realized by controlling two competing kinetic processes (polymerization and polymer dissolution) simultaneously occurring during printing. With a selected monomer, 4‐acryloylmorpholine (ACMO), printing of thermoplastic 3D scaffolds is demonstrated, which can be further converted into various materials/devices utilizing its unique water‐soluble characteristic. The ultralow viscosity of ACMO, along with surface oxygen inhibition, allows rapid liquid flow toward high‐speed open‐air printing. The process simplicity, enabling mechanism, and material versatility broaden the scope of 3D printing in constructing functional 3D devices including reconfigurable antenna, shape‐shifting structures, and microfluidics.  相似文献   

9.
3D printing is an ever growing industry that provides many benefits to the advanced manufacturing and design industry. However, parts tend to be static, rigid, and lack multi-purpose use. Recently, a new technology has emerged that uses 3D printing to print parts with the ability to change shape over time when exposed to different external stimuli. This new technology has been called 4D printing. Creation of a new material that is capable of changing shape when exposed to different stimuli and possess the ability to be 3D printed can be a difficult and a long process. Due to this strenuous process, the potential of a common fused deposition modelling material, poly(lactic) acid (PLA), for use in 4D printing is investigated and the concept of combining PLA with nylon fabric for the creation of smart textiles is explored. PLA possesses thermal shape memory behaviour and maintains these abilities when combined with nylon fabric that can be thermomechanically trained into temporary shapes and return to their permanent shapes when heated.  相似文献   

10.
Hierarchical self-morphing refers to the concurrent global and local changes in shape or structure. Previous research works have demonstrated 3D printed self-morphing structures and the sequential folding/unfolding behaviours. However, the shape change events occurred mainly at the global level in a water environment either through absorbing moisture or through heating. Concurrent global and local shape changes in an ambient environment have not been reported. In this paper, we report a hierarchically blooming flower that blossoms in an ambient environment. Our design considers the strain limit through understanding the effect of thickness on the local strain to avoid fracture and the appropriate allocation of multiple materials to achieve predefined global and local shape changes. This design approach of hierarchical 4D printing may be useful for a variety of applications that involve controlled self-morphing structures with complex geometries.  相似文献   

11.
目的 半结晶性聚乳酸(PLA)因透明性好、力学性能优异、能生物降解等优点,在加工领域表现出适用范围广等特性,因此对PLA基复合材料在3D打印技术中的研究应用及最新进展状况进行总结,以期提供借鉴与参考。方法 以熔融沉积成型(FDM)、PLA基体为主线,在查阅近年中外文献基础上,分别从PLA结构性能、3D打印成型工艺、PLA基复合材料改性等方面进行了探讨,着重分析工艺参数的技术优化,以及复合材料的结构改性最新研究进展。结果 FDM制备PLA基复合材料的研究取得了丰硕的成果,在3D打印行业中表现优异,潜力巨大,商品化程度越来越高。结论 低廉、高效、可定制的3D打印受到国内外科研工作者广泛关注与青睐,随着新技术的不断探索和突破,以及纳米材质和新型聚合物材料等新型材质应用,使3D打印在成型加工技术上占据绝对优势。  相似文献   

12.
赵晨飞  王军  阮思源 《包装工程》2021,42(5):284-289
目的 为了解决目前3D打印制造盲文存在的成本高、操作复杂的问题,将生物相容性好、可回收利用的聚乳酸线材应用于熔融沉积成型3D打印机来制造盲文,使盲文的增材制造更加简便、成本更低.方法 首先利用三维软件设计盲文文本,根据盲文文本的特点和标准设计相应的参数,如点径、点距、方距、点高、行距等.然后将设计好的3D文本分层,用单螺杆挤出的聚乳酸线材和熔融沉积3D打印机进行打印,在打印的过程中设置不同的打印温度、打印速度和层高.对打印的质量评价采用平滑度、尺寸精度、耐磨性、耐水性等4个参数进行综合评价.结果 采用正交试验法对打印参数层高、打印温度、打印速度进行分析,当打印温度为180℃,打印速度为90 mm/s,打印层高为0.1 mm时,打印盲文的质量优良.结论 按最优参数打印后的盲文安全无毒,经久耐用,可回收及降解,耐摩擦,具有一定的防水性,而且成本低,操作简单,可用于部分盲文制品.  相似文献   

13.
ABSTRACT

Integrating shape memory polymers into additive manufacturing processes enables a form of 4D printing where a printed part can be manipulated into varying geometries upon the application of external stimuli. The work here explores the raster pattern sensitivity of the shape memory properties of two iterations of a polymer blend system composed of thermoplastic rubber and acrylonitrile butadiene styrene. Tensile test specimens were fabricated in three different raster patterns through the use of material extrusion additive manufacturing and deformed at room (25°C), low (?40°C) and high temperatures (105 and 110°C). Shape memory parameters were assessed and the shape fixation ratio was found to exhibit a sensitivity to raster pattern when deformation occurred at room and low temperatures, while the shape recovery ratio was found to be sensitive to raster pattern when deformation occurred at elevated temperatures. The influence of phase content was also explored and a decrease in rubber content led to an improvement in shape memory properties. The alignment of polymer phases with print raster direction was also found to influence raster pattern sensitivity.  相似文献   

14.
With the FDA approval of the first 3D printed tablet, Spritam®, there is now precedence set for the utilization of 3D printing for the preparation of drug delivery systems. The capabilities for dispensing low volumes with accuracy, precise spatial control and layer-by-layer assembly allow for the preparation of complex compositions and geometries. The high degree of flexibility and control with 3D printing enables the preparation of dosage forms with multiple active pharmaceutical ingredients with complex and tailored release profiles. A unique opportunity for this technology for the preparation of personalized doses to address individual patient needs. This review will highlight the 3D printing technologies being utilized for the fabrication of drug delivery systems, as well as the formulation and processing parameters for consideration. This article will also summarize the range of dosage forms that have been prepared using these technologies, specifically over the last 10 years.  相似文献   

15.
16.
Aqueous rechargeable zinc-ion batteries (ARZIBs) are promising energy storage systems owing to their ecofriendliness, safety, and cost-efficiency. However, the sluggish Zn2+ diffusion kinetics originated from its inherent large atomic mass and high polarization remains an ongoing challenge. To this end, electrodes with 3D architectures and high porosity are highly desired. This work reports a rational design and fabrication of hierarchical core–shell structured cathodes (3D@V2O5) for ARZIBs by integrating fused deposition modeling (FDM) 3D-printing with atomic layer deposition (ALD). The 3D-printed porous carbon network provides an entangled electron conductive core and interconnected ion diffusion channels, whereas ALD-coated V2O5 serves as an active shell without sacrificing the porosity for facilitated Zn2+ diffusion. This endows the 3D@V2O5 cathode with high specific capacity (425 mAh g?1 at 0.3 A g?1), competitive energy and power densities (316 Wh Kg?1 at 213 W kg?1 and 163 Wh Kg?1 at 3400 W kg?1), and good rate performance (221 mAh g?1 at 4.8 A g?1). The developed 3D@V2O5 cathode provides a promising model for customized and scalable battery electrode engineering technology. As the ALD-coated layer determines the functional properties, the proposed strategy shows a promising prospect of FDM 3D printing using 1D carbon materials for future energy storage.  相似文献   

17.
形状记忆聚合物的本构关系对于其结构设计和力学行为的预报具有重要意义,但是目前对形状记忆聚合物本构模型的研究仍相对不多。文中通过回顾十几年来国内外对热驱动形状记忆聚合物本构模型研究的发展动态,归纳了形状记忆聚合物本构的建模方法与思想,按照流变学方法、细观力学方法以及二者相结合的方法分别加以介绍和评述,并对形状记忆聚合物本构建模今后可能面临解决的关键问题进行了预测。  相似文献   

18.
Nature has developed high‐performance materials and structures over millions of years of evolution and provides valuable sources of inspiration for the design of next‐generation structural materials, given the variety of excellent mechanical, hydrodynamic, optical, and electrical properties. Biomimicry, by learning from nature's concepts and design principles, is driving a paradigm shift in modern materials science and technology. However, the complicated structural architectures in nature far exceed the capability of traditional design and fabrication technologies, which hinders the progress of biomimetic study and its usage in engineering systems. Additive manufacturing (three‐dimensional (3D) printing) has created new opportunities for manipulating and mimicking the intrinsically multiscale, multimaterial, and multifunctional structures in nature. Here, an overview of recent developments in 3D printing of biomimetic reinforced mechanics, shape changing, and hydrodynamic structures, as well as optical and electrical devices is provided. The inspirations are from various creatures such as nacre, lobster claw, pine cone, flowers, octopus, butterfly wing, fly eye, etc., and various 3D‐printing technologies are discussed. Future opportunities for the development of biomimetic 3D‐printing technology to fabricate next‐generation functional materials and structures in mechanical, electrical, optical, and biomedical engineering are also outlined.  相似文献   

19.
For the built environment and for engineers, glass is an indispensable material with unique properties. Recent developments have shown that there is a potential market for additive manufacturing technology in the building industry, based on the production with a relatively small amount of repetitions and the tendency of applying technological innovations for advanced buildings. This paper focusses on the potential of fusing glass filaments on a glass base plate in order to develop a scientific base to create a process that is able to print 3D glass on glass plates for applications in the building industry. These fused components could eliminate boreholes for joints in glass panes including related disadvantages. Also, the fused deposition glass components can be a potential reinforcement of flat glass. Therefore, the fusing of soda lime silicate glass and borosilicate glass has been investigated. Based on these experiences, samples with different glass thicknesses are manufactured and the fused components are tested for their bending strength. The manufactured samples are analysed with polarized images, 3D computer tomography, microscopy and energy dispersive X‐ray spectroscopy. This paper describes, presents and discusses the results of the investigations, and demonstrates that load transfer via fused glass joints is possible in principle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号