首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the silt aggregation, compaction density, and water content of the subgrade on the hydration of five different geosynthetic clay liner (GCL) products is reported based on a series of laboratory column experiments conducted over a six-year period. GCLs meeting typical specifications in terms of minimum hydraulic conductivity and swell index are hydrated to equilibrium from the same subgrade soil with sufficient cations to cause cation exchange during hydration. It is then shown that the GCL bentonite granularity and GCL structure can have a significant (~four orders of magnitude) effect on hydraulic conductivity under the same test conditions (from 8 × 10−12 m/s for one GCL to 6 × 10−8 m/s for another GCL product). The effect of subgrade water content on the hydraulic performance of GCLs are not self-evident and quite dependent on the bentonite granularity, GCL structure, and permeant. Varying the subgrade water content from 5 to 16% and allowing the GCL to hydrate to equilibrium before permeation led to up to 5-fold difference in hydraulic conductivity when permeated with tap water and up to 60-fold difference when the same product is permeated with synthetic municipal solid waste leachate. When permeated with synthetic leachate, increasing stress from 70 kPa to 150 kPa led to a slight (average 37%; maximum 2.7-fold) decrease in hydraulic conductivity due to a decrease in bulk void ratio. It is shown that hydraulic conductivity is lower for GCLs with a scrim-reinforced geotextile, and/or with finer bentonite. It is shown that selecting a GCL based on the initial hydraulic conductivity and swell index in a manufacturers product sheet provides no assurance of good performance in field applications and it is recommended that designers pay more attention to selection of a GCL and preparation of the subgrade for important projects.  相似文献   

2.
《Soils and Foundations》2007,47(1):79-96
To investigate systematically the effects of electrolytic solutions on the barrier performance of geosynthetic clay liners (GCLs), a long-term hydraulic conductivity test for 3 years at longest was conducted on a nonprehydrated GCL permeated with inorganic chemical solutions. The hydraulic conductivity test for waste leachates was also conducted. The results of the test show that the hydraulic conductivity of GCLs significantly correlates with the swelling capacity of bentonite contained in GCLs. GCLs have excellent barrier performance of k<1.0×10-8 cm/s when the free swell is larger than 15 mL/2 g-solid regardless of the type and concentration of the permeant solution. In addition, when the results of the hydraulic conductivity test with chemical inorganic solutions were compared to those with waste leachates, the hydraulic conductivity of GCL permeated with chemical solution was almost the same within the electric conductivity of 0-25 S/m as that permeated with waste leachate having similar electric conductivity. The hydraulic conductivity of GCLs to be used in landfill bottom liners can be estimated by the hydraulic conductivity values obtained from the experiment using chemical solutions having the similar electric conductivity values, if the chemical solution had the electric conductivity within=25 S/m.  相似文献   

3.
Flow in an idealized geosynthetic clay liner (GCL) containing bentonite comprised of equisized and equispaced square granules was simulated using a hydrodynamic model to quantitatively evaluate the premise that the hydraulic conductivity of GCLs diminishes as the bentonite granules hydrate and swell into adjacent intergranular pores, creating smaller and tortuous intergranular flow paths. Predictions with the model indicate that hydraulic conductivity decreases as granules swell and intergranular pores become smaller, and that greater granule swelling during hydration is required to achieve low hydraulic conductivity when the bentonite is comprised of larger granules, or the bentonite density is lower (lower bentonite mass per unit area). Predictions made with the model indicate that intergranular pores become extremely small (<1 μm) as the hydraulic conductivity approaches 10−11 m/s. These outcomes are consistent with experimental data showing that GCLs are more permeable when hydrated and permeated with solutions that suppress swelling of the bentonite granules, and that the hydraulic conductivity of GCLs with bentonite having smaller intergranular pores (e.g., GCLs with smaller bentonite granules, more broadly graded particles, or higher bentonite density) is less sensitive to solutions that suppress swelling.  相似文献   

4.
Hydraulic conductivity and swell index tests were conducted on a conventional geosynthetic clay liner (GCL) containing sodium-bentonite (Na-B) using 5, 50, 100, 500, and 1000 mM ammonium acetate (NH4OAc) solutions to investigate how NH4+ accumulation in leachates in bioreactor and recirculation landfills may affect GCLs. Control tests were conducted with deionized (DI) water. Swell index of the Na-B was 27.7 mL/2 g in 5 mM NH4+ solution and decreased to 5.0 mL/2 g in 1000 mM NH4+ solution, whereas the swell index of Na-B in DI water was 28.0 mL/2 g. Hydraulic conductivity of the Na-B GCL to 5, 50, and 100 mM NH4+ was low, ranging from 1.6–5.9 × 10?11 m/s, which is comparable to the hydraulic conductivity to DI water (2.1 × 10?11 m/s). Hydraulic conductivities of the Na-B GCL permeated with 500 and 1000 mM NH4+ solutions were much higher (e.g., 1.6–5.2 × 10?6 m/s) due to suppression of osmotic swelling. NH4+ replaced native Na+, K+, Ca2+, and Mg2+ in the exchange complex of the Na-B during permeation with all NH4+ solutions, with the NH4+ fraction in the exchange complex increasing from 0.24 to 0.83 as the NH4+ concentration increased from 5 to 1000 mM. A Na-B GCL specimen permeated with 1000 mM NH4+ solution to chemical equilibrium was subsequently permeated with DI water. Permeation with the NH4+ converted the Na-B to “NH4-bentonite” with more than 80% of the exchange complex occupied by NH4+. Hydraulic conductivity of this GCL specimen decreased from 5.9 × 10?6 m/s to 2.9 × 10?11 m/s during permeation with DI water, indicating that “NH4-bentonite” can swell and have low hydraulic conductivity, and that the impact of more concentrated NH4+ solutions on swelling and hydraulic conductivity is reversible.  相似文献   

5.
6.
A study was conducted to investigate (1) physicochemical factors that influence polymer elution from GCLs containing a blend of bentonite and linear (water-soluble) polymer (LPB GCLs) and (2) the mechanism that controls the chemical compatibility of LPB GCLs when polymer elutes. A series of hydraulic conductivity (k), free swell and viscosity tests were performed on a commercial LPB GCL using DI water, varying concentrations of NaCl and CaCl?. Comparable tests were also performed on a conventional bentonite (CB) GCL containing the same untreated bentonite and the same physical properties as the LPB GCL. The LPB GCL showed improved swelling and hydraulic performance compared to the CB GCL when permeated with salt solutions. Total organic carbon analysis of the effluents showed that polymer eluted from the LPB GCL regardless of the permeant solution. However, the rate at which polymer eluted increased as the concentration and valence of the dominant cation increased. The rate at which polymer eluted also increased with hydraulic gradient. The mass of polymer retained inside the GCL matrix did not correlate with the k of the LPB GCL. Free swell tests coupled with chemical analysis suggest that, the improved chemical compatibility of the LPB GCL was due to the ability of the polymer to scavenge cations from the solution which allows the bentonite to undergo adequate swelling during the initial hydration period. Analogous to water-prehydrated CB GCLs, the dispersed structure of the bentonite fabric and increased adsorbed water molecules attained during initial swelling controls the k of the LPB GCL when polymer elutes.  相似文献   

7.
以土工合成粘土衬垫(Geosynthetic Clay Liner,GCL)在尾矿库防渗层中的应用为背景,研究不同浓度重金属离子(Cu和Zn)作用下,膨润土的自由膨胀量、液限及GCL渗透系数的变化规律,并分析它们之间的对应关系。试验结果显示,当重金属离子浓度在0.01mol/L到0.1mol/L之间递增时,膨润土的自由膨胀量和液限会随着重金属离子浓度的增大而大幅度减小,但当重金属离子浓度从0.1mol/L增加到0.5mol/L时,膨润土的自由膨胀量和液限则只有微小变化。在渗透试验中,当渗透溶液中重金属离子浓度小于0.01mol/L时,GCL的渗透系数能够保持稳定;但当重金属离子浓度大于0.02mol/L后,GCL的渗透系数会随着渗透溶液中重金属离子的浓度增加而不断升高。研究结果表明,当尾矿库渗滤液中重金属离子浓度大于0.02mol/L时,GCL的渗透系数与膨润土的自由膨胀量和液限之间具有良好的数学对应关系,可以利用自由膨胀量和液限对渗透系数进行预测。  相似文献   

8.
The desiccation and subsequent hydraulic conductivity of both a standard (GCL_A) and polymer-enhanced (GCL_B) Na-bentonite GCL hydrated from a well-graded sandy subsoil under 20 kPa, then subjected to a thermal gradient, and finally rehydrated and permeated with distilled water or 0.325 mol/L Na+ synthetic brine are reported.With moderate temperature of 40 °C applied to the top of the liner, GCL_B experienced less cracking than GCL_A, but this advantage disappeared when temperatures increased. Both desiccated specimens of GCL_A and B showed significant self-healing when permeated with distilled water and their hydraulic conductivities quickly reduced to around 10−11 m/s at 20 kPa upon rehydration. However, when GCL_B desiccated specimens were permeated with the synthetic brine, their hydraulic conductivities were found to be one to two orders of magnitude higher than corresponding values obtained with distilled water. On the other hand, GCL_A (with no polymer treatment) maintained its hydraulic conductivities at the same level obtained with distilled water. It is concluded that caution should be exercised in using polymer-bentonite in applications in which GCLs are subjected to significant thermal gradients unless there is data to show they are resistant to thermal effects.  相似文献   

9.
旨在评价商用土工合成材料黏土衬垫(GCL)用于阻隔赤泥渗滤液的有效性。赤泥渗滤液作用下GCL的防渗特性是评价其防污性能的关键因素。以商用改性GCL中膨润土为研究对象,通过自由膨胀试验,研究了4种赤泥渗滤液中膨润土的自由膨胀指数。以商用改性GCL为研究对象,通过改进滤失试验,研究了4种赤泥渗滤液作为渗透液作用下GCL渗透系数的变化规律,评价了预水化作用对渗透系数的影响。研究还采用清洁自来水作为GCL的渗透液作为对照。结果表明,随着离子强度的增加,改性GCL中的膨润土自由膨胀指数随之减小。预水化处理改性GCL的渗透系数相较于未预水化处理试样降低了5倍左右。在实际工程应用中,建议采用自来水预水化处理GCL,以此充分发挥其防渗性能。随着改进滤失试验中施加气压的增大,不同赤泥渗滤液作用下的改性GCL渗透系数均下降。随着离子强度和一价二价离子摩尔数比的增加,改性GCL的渗透系数随之增大。随着膨润土自由膨胀指数的增加,改性GCL的渗透系数随之减小。与自来水渗透情况相比,赤泥渗滤液渗透作用下,改性GCL渗透系数增大4.35~12.0倍。  相似文献   

10.
Hydraulic conductivity tests were performed using mixed alkaline solutions of KOH and CaCl2 (pH ~12) on thin Na-bentonite layers under various temperature conditions (25–75 °C) for 3 years. For dense thin Na-bentonite (dry density of 1.12 Mg/m3) in a mixed alkaline solution of 0.03 M KOH and 0.03 M CaCl2, the hydraulic conductivities at 50 °C and 75 °C were approximately 10 times higher than that at 25 °C. The bentonite samples permeated with the mixed solution at 50 °C and 75 °C achieved almost complete cation exchange of Na ions by Ca and K ions. However, only slight cation exchange occurred in the bentonite specimens permeated at 25 °C, regardless of the type of permeant. The free swell index of the reacted bentonite permeated with a mixed solution of 0.03 M KOH and 0.03 M CaCl2 significantly decreased at 50 °C and 75 °C compared with that at 25 °C. X-ray diffraction analysis revealed that the decreases in the relative intensities of the peaks of accessory minerals, such as opal-cristobalite/tridymite, quartz, and feldspar, were enhanced at 50 °C and 75 °C.  相似文献   

11.
Hydraulic conductivity of seven geosynthetic clay liners (GCLs) to synthetic coal combustion product (CCP) leachates were evaluated in this study. The leachates are chemically representative of typical and worst scenarios observed in CCP landfills. The ionic strength (I) of the synthetic CCP leachates ranged from 50 mM to 4676 mM (TCCP-50, LRMD-96, TFGDS-473, LR-2577, HI-3179 and HR-4676). One of the GCLs contained conventional sodium bentonite (Na–B) and the other six contained bentonite-polymer (B–P) mixture with polymer loadings ranging from 0.5% to 12.7%. Hydraulic conductivity tests were conducted at an effective confining stress of 20 kPa. The hydraulic conductivity of the Na–B GCLs were >1 × 10−10 m/s when permeated with all six CCP leachates, whereas the B–P GCLs with sufficient polymer loading maintained low hydraulic conductivity to synthetic CCP leachates. All the B–P GCLs showed low hydraulic conductivity (<1 × 10−10 m/s) to low ionic strength leachates (TCCP-50, I = 50 mM and LRMD-96, I = 96 mM). B–P GCLs with P > 5% showed low hydraulic conductivity (<1 × 10−10 m/s) up to HI-3179 leachates. These results suggest that B–P GCLs with sufficient polymer loading can be used to manage aggressive CCP leachates.  相似文献   

12.
《Soils and Foundations》2022,62(6):101235
Polymer-enhanced bentonites for geoenvironmental containment barriers, such as bentonite-polyacrylic-acid composite (BPC), generally have low hydraulic conductivity (e.g., k < 10?10 m/s) even when exposed to aggressive waste solutions. However, understanding of diffusion and membrane behavior properties of enhanced bentonites and associated impacts on coupled contaminant transport through the barrier remains limited. In this study, hydraulic conductivity (k), effective diffusion coefficients (D*), and membrane efficiencies (ω) were measured for BPC with 3.2 % polymer content (by mass; referred to as BPC-3.2). Tests were performed with potassium chloride (KCl) solutions ranging from dilute (2.5 mM) to aggressive (400 mM) concentrations. As concentration increased, D* increased by a factor of three, ω decreased by two orders of magnitude, and k remained relatively low (1.2 × 10?11 to 2.9 × 10?11 m/s). The experimental results were paired with an existing coupled solute transport model to evaluate the significance of membrane behavior and diffusion on predicted total solute flux through a geosynthetic clay liner (GCL) and a GCL overlying an attenuation layer. The predicted mass flux was diffusion dominated, with the diffusive flux greater than the advective flux by one to two orders of magnitude. Membrane behavior reduced predicted total solute flux through the GCL by 5.8 to 61 %. The results demonstrate the role of coupled solute transport in the long-term performance of bentonite barriers, and advance understanding of contaminant transport in BPC.  相似文献   

13.
The hydraulic conductivity of geosynthetic clay liners (GCLs) permeated with deionized water (S0) and NH4+ solutions, with concentrations of 100 mg/L (S100) and 1000 mg/L (S1000), was examined under six dry-wet cycles. The internal properties of virgin, desiccated, and healed GCLs were analyzed and quantified using X-ray computed tomography images. The hydraulic conductivity of the GCLs permeated with S0 and S100 underwent a negligible change during the six dry-wet cycles, whereas that of S1000 increased by almost three orders of magnitude after two desiccations. Each desiccation, after permeating with S0 and S100, generated a completely different macro-crack pattern; however, generation of macro-cracks at the same locations from dry cycles 2 to 6 and an abundance of micro-cracks were typical for S1000. This implies the severe deterioration of bentonite due to multi-desiccations and chemical compatibility with S1000. Moreover, the swell index of bentonite exposed to S1000 was reduced by approximately half, after six dry-wet cycles. Despite the lower volume percentage of macro-cracks for S1000 compared to S0 and S100, the swelling capacity of this bentonite was insufficient to fully heal these cracks. Hence, the swelling properties of bentonite dominate crack volume with regard to determining the hydraulic conductivity of GCLs.  相似文献   

14.
The high ionic strength of the porewater in red mud (bauxite liquor from digestion) can suppress swelling of montmorillonite, resulting in geosynthetic clay liners (GCLs) that are too permeable to be effective as liners in red mud disposal facilities. Bentonite-polymer composite GCLs (BPC GCLs) have been developed as more resilient lining materials, and some BPC GCLs have been shown to have very low hydraulic conductivity to bauxite liquors that have extreme ionic strength and pH. In this study, a nationwide investigation was conducted in China to evaluate the characteristics of bauxite liquor in Chinese impoundments, and to evaluate the suitability of GCLs containing granular sodium bentonite or BPCs for containment. Hydraulic conductivity tests were conducted on six BPC GCLs with two characteristic Chinese bauxite liquors that are hyperalkaline (pH > 12) and had ionic strengths of 76.9 mM and 620.3 mM. The BPC GCLs had hydraulic conductivity ranging from 10?8-10?12 m/s, which is higher than the hydraulic conductivity of BPC GCLs to deionized water (10?12-10?13 m/s), but lower than the hydraulic conductivity of conventional GCLs with granular sodium bentonite GCLs to the same liquors (10?7-10?8 m/s). The hydraulic conductivity of the BPC GCLs depends on the chemical properties of the leachate, the polymer loading, and the type of polymer. Microstructural analysis by scanning electron microscopy (SEM) suggests that the hydraulic conductivity of BPC GCLs is controlled by pore-blocking by polymer hydrogel, which is affected by the bauxite liquor.  相似文献   

15.
Geosynthetic clay liners (GCLs) are used in landfill liner applications due primarily to their low hydraulic conductivity to water. The low hydraulic conductivity of GCLs comes from the structure of the clay in the bentonite. However, the interaction between clay and aggressive liquids may alter the structure of the clay and, thus, result in an increase in the hydraulic conductivity of the GCL. This paper presents the results of a project aimed at evaluating the impact of a synthetic leachate on the structure of four different bentonites used in the manufacturing of GCLs. The preparation of bentonite dispersions increased the interaction between the bentonites and the various liquids. The hydraulic properties of the dispersions also were tested using filter press tests to obtain flow curves. Results of these tests were correlated with the cationic concentration, electrical conductivity and pH of the dispersions, swell indexes of the bentonite extracted from the GCLs, and permittivities of the intact GCLs determined in oedopermeameter tests. The results showed that one bentonite was more sensitive to the synthetic leachate than the other bentonites. For example, the permittivities of the more sensitive bentonite based on the oedopermeameter tests and filter press tests were respectively 2.11 × 10−8 s−1 and 5.6 × 10−8 s−1, whereas the permittivities for other bentonites, including a natural sodium bentonite and two sodium-activated calcium bentonites, were respectively 5.7 to 6.5 × 10−9 s−1 and 3.2 to 3.5 × 10−8 s−1. The filter press test served as a quick and easy-to-use test to compare the performance of the various bentonites in containing a given liquid. However, the oedopermeameter test or direct permeation test is preferable to filter press tests or fluid loss tests for evaluating the long-term impact of a liquid on a bentonite.  相似文献   

16.
When geosynthetic clay liners (GCLs) are applied as bottom liners at waste containment facilities, they are naturally prehydrated by absorbing moisture in the underlying base layers. In order to evaluate the effects of cations contained in waste leachates, this study investigated the effects of the water content distribution of the GCLs prehydrated with actual soils on their hydraulic conductivities against CaCl2 solutions. The “prehydration tests”, which were conducted prior to the hydraulic conductivity tests, showed that the water content distribution of the prehydrated GCLs depends on the properties of the GCLs and the base layers. In particular, drastic differences between GCLs with powdered bentonite and GCLs with granular bentonite were observed in the prehydration water content and its distribution. Prehydrated GCLs with powdered bentonite had a higher water content and a more homogenous distribution than those with granular bentonite. The hydraulic conductivity tests showed that most of the prehydrated GCLs exhibit a low hydraulic conductivity of k?1.0×10-8 cm/s against CaCl2 solutions with 0.1-0.5 M. However, GCLs with granular bentonite may be difficult to homogeneously prehydrate and exhibit an unstable hydraulic conductivity, which varies from k=2.9×10-9 cm/s to k=1.5×10-6 cm/s. The homogeneity of the water content distribution has been considered an important factor to obtain a required barrier performance under prehydration conditions, which are naturally generated in actual sites.  相似文献   

17.
The performance of five different GCLs (two GCLs with standard sodium bentonite and three GCLs with polymer enhanced bentonite) subjected to three different climatic modes of wet-dry cycles simulating conditions to which a GCL might expose in cover systems over a prolonged time is reported. The wetting cycles lasted for 8 h, while the drying cycles varied between 16 h, seven days, and 14 days. It is shown that after around a year of accelerated aging, the hydraulic conductivity of the aged GCLs increased notably when permeated with tap water at an applied effective stress of 15 kPa for a range of heads (0.07, 0.14, 0.21, 0.49, and 1.2 m). The combined effects of the number and the duration of the wet-dry cycles, the GCL's mass per unit area, the carrier geotextile, the size and the number of the needle punch bundles, and the thermal treatment to bond the needle-punch bundles to the carrier geotextile are discussed. The poor hydraulic performance of the polymer-amended/modified bentonite GCLs is discussed.  相似文献   

18.
Experiments quantifying GCL permittivity and the ultimate water head the GCLs can sustain before the initiation of internal erosion when underlain by a 50 mm angular to subangular gravel subgrade are conducted. The influence of different geotextiles over the subgrade, water heads, hydration periods before testing, masses per unit area of bentonite within the GCL, and ionic strengths of the solution (cation exchange) are considered. Test results show that GCL with the scrim-reinforced nonwoven geotextile over the subgrade has the best hydraulic performance against internal erosion, followed by the woven geotextile coated with a 110 g/m2 polypropylene film. A woven or nonwoven is the least useful for preventing internal erosion, with the corresponding threshold water head initiating internal erosion >39 m for scrim-reinforced nonwoven, 21 m for lightly coated woven, 4–5 m for woven and nonwoven alone, respectively. Cation exchange, length of hydration, and mass per unit area of bentonite do not notably affect the threshold water head for the subgrade examined. Once internal erosion occurs, there is a 3-order of magnitude increase in permittivity. The practical implications are discussed.  相似文献   

19.
The behaviour of geosynthetic clay liners (GCLs) as part of a physical-environmental system is examined. Consideration is given to: (a) both the physical and hydraulic interactions with the materials, and the chemical interactions with the fluids, above and below the liner, (b) time-dependent changes in the materials, (c) heat generated from the material to be contained, as well as (d) the climatic conditions both during construction and during service. This paper explores some common perceptions about GCL behaviour and then examines the misconceptions that can arise and their implications. It demonstrates how what may first appear obvious is not always as one expects and that more is not always better. It discusses: (i) the pore structure of a GCL, (ii) the dependency of the water retention curve of the GCL on its structure, bentonite particle sizes and applied stress, (iii) the effect of the subgrade pore water chemistry, (iv) the mineralogy of the subgrade, and (v) thermal effects. The desirability of a GCL being reasonably well-hydrated before being permeated is examined. The critical size of needle-punch bundles at which preferential flow can increase hydraulic conductivity by orders of magnitude is illustrated. The dependency of self-healing of holes on the interaction between GCL and subgrade is discussed. Finally, the transmissivity of the geomembrane/GCL interface is shown to be a function of GCL and geomembrane characteristics and to be poorly correlated with GCL hydraulic conductivity.  相似文献   

20.
This paper investigates whether the introduction of an airgap above a composite liner made of a geomembrane (GMB) and a Geosynthetic Clay Liner (GCL) can decrease thermal loads on the GCL, reduce the risk of bentonite desiccation and/or help maintain its low hydraulic conductivity. A composite liner, subject to 20?kPa overburden load, over a well graded sand was subjected to a thermal gradient. In addition, to the reference base case in which no airgap was present, two designs included air gaps through the placement of a 10?mm and 20?mm-thick geocomposites (GC) on top of the GCL-GMB, respectively.Temperatures on top of the GCLs were found to be significantly reduced by the presence of air gaps, relative to the reference base case. All three designs resulted in GCL desiccation cracks at the end of the tests, due to the relatively high temperature gradients and low water retention of the subsoil, even in the presence of air gaps. However, X-Ray imaging revealed that crack patterns in bentonite samples from designs with air gaps were finer and narrower. Subsequent rehydration (and permeation tests) with distilled water indicated that significant self-healing of bentonite was in evidence in all three cases. However, while in the absence of an air gap the saturated hydraulic conductivity was found to be 2.8 times its pre-heating value, no significant increase was recorded for other two cases. X-Ray imaging of rehydrated samples confirmed that more effective healing had occurred in samples with an air gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号