首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Flexible strain sensors are a new generation of flexible and stretchable electronic devices that attracted increasing attention due to their practical applications in many fields. However, maintaining a wide detectable strain range while improving the sensitivity of flexible strain sensors remains challenging. In this study, flexible strain sensors with a large working range based on biaxially stretched carbon nanotubes (CNTs)/polyolefin elastomer (POE) nanocomposites were fabricated. Biaxial stretching was demonstrated to enhance the uniform dispersion and orientation of CNTs, thereby improving the performance of sensors. The optimal stretching ratios (SRs) of nanocomposites were investigated and the data revealed an increment in the sensitivity of sensors with SRs, while the working range first increased after biaxial stretching and decreased at higher SRs. Compared to the 9 wt% CNT/POE-1.0 sensor with a gauge factor (GF) value of 2.37 and a detectable range of 0.5%–230%, the CNT/POE-2.0 sensor exhibited an enhanced sensitivity (GF = 3935.12) coupled with a wider detectable range (0.5%–710%) and better stability. Besides, CNT/POE-2.0 sensor also achieved the monitoring of head movements, mouth opening, facial expression, and physiological signals, showing a potential for use in wearable electronic products.  相似文献   

2.
    
Modified eucalyptus kraft lignin doped with multiwall carbon nanotubes (MWCNTs) was used as a macromonomer in step‐growth polymerization with tolylene 2,4‐diisocyanate terminated poly(propylene glycol) with the aim of producing a conductive copolymer for all‐solid‐state potentiometric chemical sensor applications. The crosslinked elastomeric polyurethane obtained was characterized by Fourier transform infrared attenuated total reflection spectroscopy, scanning electron microscopy, tunnelling electron microscopy and atomic force microscopy. Doping of lignin‐based polyurethane with MWCNTs produced a significant enhancement of its electrical conductivity without deterioration of thermal and viscoelastic properties. The polymer composite displayed a low percolation threshold at an MWCNT concentration of 0.18% (w/w), which was explained by the oriented distribution of MWCNTs along lignin clusters. All lignin‐based polyurethanes doped with MWCNTs at concentrations above the percolation threshold are suitable for sensor applications. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
    
Tensile piezoresistive properties of multiwall carbon nanotube (MWCNT)/segmented polyurethane (SPU) composites comprising 15, 30, and 50 wt % rigid segment (RS) contents and 2, 4, and 6 wt % MWCNT contents are investigated. The physicochemical properties of such composites are used to better understand their mechanical and piezoresistive behavior. Infrared spectra shows that for 15 and 30 wt % RS composites the addition of MWCNTs promotes a more structured RS domain which increases the phase separation, while for 50 wt % RS composites the MWCNTs disrupt the RS domains of the polymer with a high phase separation. Overall, MWCNT content has less effect on the phase separation than RS content. The composites with 6 wt % MWCNT content reached electrical conductivities of the order of ~10?1 S/m using 15 and 50 wt % RS polymers. Upon deformation, composites with 15 wt % RS and 4 wt % MWCNT achieved changes in electrical resistance of the order of 5000 times their unstrained value, which are outstanding values that can be exploited for applications such as human motion detection. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44448.  相似文献   

4.
5.
    
Performance of HDPE/MWCNT composite at high strain rate up to 104 s?1 was investigated in a split Hopkinson pressure bar. The results revealed that the incorporation of MWCNTs into HDPE can enhance the impact strength of HDPE. High strain rate impact has a significant influence on morphology, density, crystallinity and melting temperature of the composite. With increase in strain rate, the densities of both HDPE and HDPE/MWCNT composite decreased. The drop of the density of HDPE/MWCNT composite was quicker than that of HDPE density. This could be the reason that much more cracks were formed in the HDPE/MWCNT composite, which could result in high energy dissipation, during SHPB test. The corporation of MWCNTs did lead to the decrease in yield stress.

  相似文献   


6.
碳纳米管在电化学传感器中的应用进展   总被引:4,自引:0,他引:4  
张旭志  焦奎  赵常志  孙伟 《化学试剂》2006,28(12):717-723
综述了碳纳米管(Carbon Nanotube,CNT)在电化学传感器研究中的应用进展。重点介绍了CNT电极和CNT修饰电极的制备、电化学特性及应用,并对其在DNA电化学生物传感器方面的应用前景与挑战进行了展望。  相似文献   

7.
8.
    
Melt spinning of a novel piezoelectric bicomponent fiber, with poly(vinylidene fluoride) as the electroactive sheath component, has been demonstrated. An electrically conductive compound of carbon black (CB) and high density polyethylene was used as core material, working as an inner electrode. A force sensor consisting of a number of fibers embedded in a soft CB/polyolefin elastomer matrix was manufactured for characterization. The fibers showed a clear piezoelectric effect, with a voltage output (peak‐to‐peak) of up to 40 mV under lateral compression. This continuous all‐polymer piezoelectric fiber introduces new possibilities toward minimal single fiber sensors as well as large area sensors produced in standard industrial weaving machines. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
    
The well dispersed multiwalled carbon nanotube (MWCNT)/epoxy composites were prepared by functionalization of the MWCNT surfaces with glycidyl methacrylate (GMA). The morphology and thermal properties of the epoxy nanocomposites were investigated and compared with the surface characteristics of MWCNTs. GMA‐grafted MWCNTs improved the dispersion and interfacial adhesion in epoxy resin, and enhanced the network structure. The storage modulus of 3 phr GMA‐MWCNTs/epoxy composites at 50°C increased from 0.32 GPa to 2.87 GPa (enhanced by 799%) and the increased tanδ from 50.5°C to 61.7°C (increased by 11.2°C) comparing with neat epoxy resin, respectively. Furthermore, the thermal conductivity of 3 phr GMA‐MWCNTs/epoxy composite is increased by 183%, from 0.2042 W/mK (neat epoxy) to 0.5781 W/mK. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
    
Adding conductive carbon fillers to electrically insulating thermoplastic polymers increases the resulting composite's electrical conductivity, which would enable them to be used in electrostatic dissipative and semiconductive applications. In this study, varying amounts of carbon black (CB: 2 to 10 wt %), multiwalled carbon nanotubes (CNT: 0.5 to 8 wt %), or exfoliated graphite nanoplatelets (GNP: 2 to 15 wt %) were added to polycarbonate (PC) and the resulting composites were tested for electrical conductivity (EC = 1/electrical resistivity). The percolation threshold was ~ 1.2 vol % CNT, ~ 2.4 vol % CB, and ~ 4.6 vol % GNP. In addition, three EC models (Mamunya, additive, and general effective media) were developed for the CB/PC, CNT/PC, and GNP/PC composites. The general effective media (GEM) model showed the best agreement with the experimental results over the entire range of filler concentrations (above and below the percolation threshold) for all three composite systems. In addition, the GEM model can be easily adapted for composites containing combinations of different conductive fillers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
    
The morphology and properties of multiwalled carbon nanotube modified polypropylene (PP)/ethylene–octene copolymer blends were studied. Polypropylene chains are covalently grafted onto the surface of carbon nanotubes (CNTs) in order to improve their interaction with the polymer matrix. It is observed that functionalization of CNTs improves their dispersion and increases the interfacial bonding between CNTs and polymer matrix. The functionalized CNTs are selectively distributed in the continuous polypropylene phase. The size of the dispersed elastomer phase decreases after the addition of CNTs. Functionalized CNTs act as a nucleating agent and increase the crystallinity of the polypropylene. More importantly, an important increase in impact strength, stiffness and toughness can be achieved through introducing functionalized CNTs. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
    
Wearable flexible electronic strain sensor devices have gained significant attention in recent years due to their potential for detecting human motion in various scenarios. However, the development of strain sensors with high sensitivity across a wide range of strains remains a major challenge. We present herein a novel strain sensor based on a graded structure thermoplastic polyurethane (TPU)/carbon nanotube (CNT) composite yarn with significantly enhanced mechanical performance imparted by the designed structure. The twisted CNTs/TPU spiral yarn demonstrated a fracture elongation of up to 1066% while maintaining charge conductivity under high-strain conditions. Moreover, it exhibited sensitive changes in resistance versus tensile strain, excellent repeatability, and stability. As a strain sensor, it achieved a gauge factor (GF) of 67.2 within a strain range below 50%, reaching 51.7 in a strain range exceeding 150%. With a fast response time of 0.12 s, it enabled accurate identification of movements in different body parts. These findings highlight the broad application potential of the designed spiral yarn strain sensor in areas such as human motion monitoring and human–computer interaction.  相似文献   

13.
    
A new flexible polymeric gas sensor is developed by photocrosslinking poly(ethylene glycol) diacrylate resin (PEGDA) containing multi‐walled carbon nanotubes (MWCNTs) as conductive filler. The cured material shows a percolative threshold conductivity which changes when in contact with various gas analytes with different chemical and physical properties. The different behavior of the sensors toward the different gases is explained either on the basis of chemical affinity toward the polymeric matrix or due to the interactions that can occur between the analyte and the surface of the nanotubes in the case of the aromatic gas.  相似文献   

14.
    
A mixed fill system of multiwalled carbon nanotubes (MWCNT) and hydroxylated MWCNT (HO‐MWCNT) in a poly(vinylidene fluoride) (PVDF) matrix was investigated to improve nanotube dispersion and enhance electrical percolation for the bulk nanocomposites. Nonfunctionalized MWCNT were blended at various concentrations into dimethylformamide solutions containing PVDF with 0, 5, or 10 wt % HO‐MWCNT. Composite samples prepared from these solutions were examined by four‐point probe resistivity measurements. The percolation threshold decreased from 0.49 wt % MWCNT in binary MWCNT/PVDF composites to 0.25 wt % for ternary composites containing MWCNT/HO‐MWCNT/PVDF, with either 5 or 10 wt % HO‐MWCNT. In the case of the ternary composite with 10 wt % HO‐MWCNT, the lowest fill percent of MWCNT (0.25 wt %) measured a conductivity that was three orders of magnitude higher than the binary MWCNT/PVDF composite containing twice the concentration of MWCNT (0.5 wt %). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
    
BACKGROUND: The development of carbon nanotube‐reinforced composites has been impeded by the difficult dispersion of the nanotubes in polymers and the weak interaction between the nanofiller and matrices. Efficient dispersion of carbon nanotubes is essential for the formation of a functional nanotube network in a composite matrix. RESULTS: Multiwalled carbon nanotubes (MWNTs) were incorporated into a polyimide matrix to produce MWNT/polyimide nanocomposites. To disperse well the MWNTs in the matrix and thus improve the interfacial adhesion between the nanotubes and the polymer, ‘branches’ were grafted onto the surface of the nanotubes by reacting octadecyl isocyanate with carboxylated MWNTs. The functionalized MWNTs were suspended in a precursor solution, and the dispersion was cast, followed by drying and imidization to obtain MWNT/polyimide nanocomposites. CONCLUSION: The functionalized MWNTs appear as a homogeneous dispersion in the polymer matrix. The thermal stability and the mechanical properties are greatly improved, which is attributed to the strong interactions between the functionalized MWNTs and the polyimide matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
    
Flexible sensors, made of PVDF-HFP reinforced with carbon nanotubes (CNTs), are manufactured by solvent casting. More specifically, the effect of evaporation temperature and sonication time is explored. It is seen that two effects govern the dispersion of CNT: the sedimentation half-time, and the breakage induced by the ultrasonication process. In this regard, it is found that 60°C is an optimum evaporation temperature to reach the highest value of electrical conductivity, since it offers a good balance between these effects, leading to the creation of a more efficient electrical network. This is also confirmed by the AC analysis, where these samples show the highest characteristic frequencies. The electromechanical results show a greater dependency on evaporation temperature for low sonication times, as the breakage induced by an ultrasonic process is not so pronounced and, therefore, the sedimentation effect plays a more dominant role. In addition, cycling tests show robust electromechanical response with cycling, and creep tests prove good electrical response of the sensors, less than 200 ms in some cases. Finally, proof of concept testing of wrist, shoulder, and neck monitoring highlights the potential of the proposed materials for sensing applications.  相似文献   

17.
The properties of three‐dimensional networks of nanoparticles in polymer/carbon nanotubes (CNT) nanocomposites (PCNT) are particularly interesting from fundamental and application views. In this article, a new model is suggested for predicting the tensile modulus of PCNT using the Ouali and Paul models. The Ouali model considers the network of CNT in a polymer matrix, while the Paul model predicts the tensile modulus of samples containing dispersed nanoparticles. The predictions of the suggested approach are compared with experimental data from several samples. Also, the roles of the main parameters in the tensile modulus of PCNT are evaluated. The predictions agree with the experimental results at different filler concentrations. The roles of these parameters on the tensile modulus of PCNT are discussed based on the properties of CNT networks. © 2017 American Institute of Chemical Engineers AIChE J, 63: 220–225, 2018  相似文献   

18.
凭借出色的力学、电学性能和化学稳定性,碳纳米管在电化学、纳米器件、能源、催化等领域具有广泛的应用前景。但是,分散性差、化学活性低等缺点极大地限制了碳纳米管的应用。本文主要介绍了了碳纳米管的共价修饰和非共价修饰,分析了各方法的差异和优缺点;并简要介绍了碳纳米管在环境分析、电化学生物传感器等电化学领域的主要应用。  相似文献   

19.
    
This study investigates the effect of functionalized nanoclay on dielectric properties in the X-band (8.2-12.4 GHz) of synthesized nitrogen-doped carbon nanotube (N-CNT)/nanoclay/polyvinylidene fluoride (PVDF) nanocomposites prepared via melt-mixing. Montmorillonite nanoclay was functionalized by an aminosilane coupling agent, making the nanoclay more compatible with the organic polymer. N-CNT was synthesized employing a chemical vapor deposition technique. Transmission electron microscopy and optical microscopy were used to assess the morphology of nanocomposites. The incorporation of nanoclay improved the dielectric properties, that is, dissipation factor of N-CNT/PVDF nanocomposites. For instance, incorporation of 0.5 wt% nanoclay into N-CNT/PVDF nanocomposite at 1.0 wt% N-CNT loading resulted in 61% reduction in the dissipation factor (from 0.18 ± 0.01 to 0.07 ± 0.01). The percolation threshold increased from 0.3 to 1.0 wt% of N-CNT by incorporation of 0.5 wt% nanoclay, which expanded the percolation region. In addition, incorporation of 0.5 wt% nanoclay reduced agglomeration area ratio of 1.0 wt% N-CNT/PVDF nanocomposite by 57%. Rheological results indicated collapse of N-CNT networks upon addition of nanoclay to the N-CNT/PVDF nanocomposite, which confirmed the dielectric results. Nitrogen heteroatoms (scattering centers) and functionalized nanoclay were responsible for reducing the dissipation factor.  相似文献   

20.
    
The electrical percolation threshold of carbon nanotubes (CNTs) is correlated with their dispersion state and aspect ratio through modeling. An analytical percolation model based on excluded volume theory and developed for systems containing two types of fillers is used. CNTs are modeled as two types of fillers: single CNT and m‐CNT bundle, and a variable P representing the dispersion state of CNTs is introduced. An equation showing the effects of the dispersion state and aspect ratio on the electrical percolation threshold of CNTs is established and verified with some of the published experimental data. It is useful for predicting the conductive behavior of polymer/CNT composites and for the design of their processing conditions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号