首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the mechanical strength of natural hydrogels and to obtain a sustained drug‐delivery device, temperature‐/pH‐sensitive hydrogel beads composed of calcium alginate (Ca‐alginate) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared in the presence of poly(sodium acrylate) (PAANa) with ultrahigh molecular weight (Mη ≥ 1.0 × 107) as a strengthening agent. The influence of PAANa content on the properties, including the beads stability, swelling, and drug‐release behaviors, of the hydrogels was evaluated. Scanning electron microscopy and oscillation experiments were used to analyze the structure and mechanical stability of the hydrogel beads, respectively. The results show that stability of the obtained Ca‐alginate/PNIPAAm hydrogel beads strengthened by PAANa the alginate/poly(N‐isopropyl acrylamide) hydrogel bead (SANBs) was significantly improved compared to that of the beads without PAANa (NANBs) at pH 7.4. The swelling behavior and drug‐release capability of the SANBs were markedly dependent on the PAANa content and on the environmental temperature and pH. The bead sample with a higher percentage of PAANa exhibited a lower swelling rate and slower drug release. The drug release profiles from SANBs were further studied in simulated intestinal fluid, and the results demonstrated here suggest that SANBs could serve as a potential candidate for controlled drug delivery in vivo. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A novel hydrogel poly(acrylamide‐co‐poly‐N‐methylacrylamide) grafted katira gum (KG) was synthesized via free radical copolymerization using a mixture of acrylamide and N‐methylacrylamide in presence of N,N′‐methylene‐bis‐acrylamide as a crosslinking agent. A series of hydrogels (KG‐1 to KG‐6) were prepared by varying amount of acrylamide and N‐methylacryamide. Poly‐acrylamide‐g‐katira gum (PAM‐g‐KG) and poly‐N‐methylacrylamide‐g‐katira gum (PNMA‐g‐KG) hydrogels were also prepared using same crosslinking agent. Swelling characteristics of all the prepared hydrogels in water were evaluated and the hydrogel with best swelling property (KG‐6) was identified. The hydrogel KG‐6 was characterized by FTIR, X‐ray diffractometer, and scanning electron microscopy and was used for the adsorption of textile dyes namely methylene blue (MB), malachite green (MG), and congo red (CR) from single and ternary solutions. Adsorption dynamics, kinetics, isotherm, and thermodynamics of all the prepared hydrogels were studied in the ternary dye solutions. The sorption kinetics data were fitted well to pseudo‐second order and the equilibrium adsorption data were found to follow Freundlich isotherm model. The thermodynamics studies showed that the adsorption process was spontaneous and exothermic in nature. The preferential dye adsorption by the hydrogel was followed in the order MB > MG > CR. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45958.  相似文献   

3.
Hydrogels have been widely used as mild biomaterials due to their bio‐affinity, high drug loading capability and controllable release profiles. However, hydrogel‐based carriers are greatly limited for the delivery of hydrophobic payloads due to the lack of hydrophobic binding sites. Herein, nano‐liposome micelles were embedded in semi‐interpenetrating poly[(N‐isopropylacrylamide)‐co‐chitosan] (PNIPAAm‐co‐CS) and poly[(N‐isopropylacrylamide)‐co‐(sodium alginate)] (PNIPAAm‐co‐SA) hydrogels which were responsive to both temperature and pH, thereby establishing tunable nanocomposite hydrogel delivery systems. Nano‐micelles formed via the self‐assembly of phospholipid could serve as the link between hydrophobic drug and hydrophilic hydrogel due to their special amphiphilic structure. The results of transmission and scanning electron microscopies and infrared spectroscopy showed that the porous hydrogels were successfully fabricated and the liposomes encapsulated with baicalein could be well contained in the network. In addition, the experimental results of response release in vitro revealed that the smart hydrogels showed different degree of sensitiveness under different pH and temperature stimuli. The results of the study demonstrate that combining PNIPAAm‐co‐SA and PNIPAAm‐co‐CS hydrogels with liposomes encapsulated with hydrophobic drugs is a feasible method for hydrophobic drug delivery and have potential application prospects in the medical field. © 2018 Society of Chemical Industry  相似文献   

4.
Hydrogels, nanogels and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for a long‐term drug release system. In this regard, the design and application of a nanocomposite hydrogel containing entrapped nanogel for drug delivery are demonstrated. To this aim, we first prepared an iron oxide nanocomposite nanogel based on poly(N‐isopropylacrylamide)‐co‐((2‐dimethylaminoethyl) methacrylate) (PNIPAM‐co‐PDMA) grafted onto sodium alginate (NaAlg) as a biocompatible polymer and iron oxide nanoparticles (ION) as nanometric base (PND/ION‐NG). This was then added into a solution of PDMA grafted onto NaAlg. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermal and magnetic responsivity was fabricated. The synthesized samples were fully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy‐dispersive X‐ray analysis, vibrating sample magnetometry and atomic force microscopy. A mechanism for the formation of PNIPAM‐co‐PDMA/NaAlg‐ION nanogel–PDMA/NaAlg‐ION hydrogel and PND/ION nanogel is suggested. Swelling capacity was measured at various temperatures (25 to 45 °C), pH values (from 2 to 11) and magnetic field and under load (0.3 psi) and the dependence of swelling properties of the nanogel–hydrogel nanocomposite on these factors was well demonstrated. The release rate of doxorubicin hydrochloride (DOX) as an anticancer drug was studied at different pH values and temperatures in the presence and absence of a magnetic field. The results showed that these factors have a high impact on drug release from this nanocomposite. The result showed that DOX release could be sustained for up to 12.5 days from these nanocomposite hydrogels, significantly longer than that achievable using the constituent hydrogel or nanogel alone (<1 day). The results indicated that the nanogel–hydrogel nanocomposite can serve as a novel nanocarrier for anticancer drug delivery. © 2019 Society of Chemical Industry  相似文献   

5.
A series of novel nanocomposite hydrogels were prepared by a cross‐linking copolymerization method. Structural and morphological characterizations of the nanocomposite hydrogels revealed that a good compatibility exists between poly(acrylamide‐co‐sodium methacrylate) [P(AM‐co‐SMA)] and carboxyl‐functionalized carbon nanotubes (MWNTs–COOH). The P(AM‐co‐SMA)/MWNTs–COOH nanocomposite hydrogels with a suitable MWNTs–COOH loading exhibited better swelling capability, higher pH sensitivity, good reversibility, and repeatability, and rapid response to external pH stimuli, compared with the P(AM‐co‐SMA). The compression mechanical tests revealed that the nanocomposite hydrogel displayed excellent compressive strengths and elastic mechanical properties, with higher ultimate compressive stress, and meanwhile still retain a good recoverable strain in the presence of MWNTs–COOH. These excellent properties may primarily be attributed to effectively dispersing of a suitable MWNTs–COOH loading into the matrix of the polymers and formation of additional hydrogen bonds. The nanocomposite hydrogels were expected to find applications in drug controlled release and issue engineering. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

6.
Hydrogels, composed of poly(acrylamide‐co‐maleic acid) were synthesized and the release of vitamin B2 from these gels was studied as a function of the pH of the external media, the initial amount of the drug loaded, and the crosslinking ratio in the polymer matrix. The gels containing 3.8 mg of the drug per gram gel exhibit almost zero‐order release behavior in the external media of pH 7.4 over the time interval of more than their half‐life period (t1/2). The amount of the drug loaded into the hydrogel also affected the dynamic release of the encapsulated drug. As expected, the gels showed a complete swelling‐dependent mechanism, which was further supported by the similar morphology of the swelling and release profiles of the drug‐loaded sample. The hydrophilic nature of the drug riboflavin does not contribute toward the zero‐order release dynamics of the hydrogel system. On the other hand, the swelling osmotic pressure developed between the gels and the external phase, due to loading of the drug by equilibration of the gels in the alkaline drug solution, plays an effective role in governing the swelling and release profiles. Finally, the minimum release of the drug in the swelling media of pH 2.0 and the maximum release with zero‐order kinetics in the medium of pH 7.4 suggest that the proposed drug‐delivery devices have a significant potential to be used as an oral drug‐delivery system for colon‐specific delivery along the gastrointestinal (GI) tract. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1133–1145, 2002; DOI 10.1002/app.10402  相似文献   

7.
To reach sustained drug release, a new composite drug‐delivery system consisting of poly(d,l ‐lactide‐co‐glycolide) (PLGA) nanoparticles (NPs) embedded in thermosensitive poly(N‐isopropyl acrylamide) (PNIPAAm) hydrogels was developed. The PNIPAAm hydrogels were synthesized by free‐radical polymerization and were crosslinked with poly(ethylene glycol) diacrylate, and the PLGA NPs were prepared by a water‐in‐oil‐in‐water double‐emulsion solvent‐evaporation method. The release behavior of the composite hydrogels loaded with albumin–fluorescein isothiocyanate conjugate was studied and compared with that of the drug‐loaded neat hydrogel and PLGA NPs. The results indicate that we could best control the release rate of the drug by loading it to the PLGA NPs and then embedding the whole system in the PNIPAAm hydrogels. The developed composite hydrogel systems showed near zero‐order drug‐release kinetics along with a reduction or omission of initial burst release. The differential scanning calorimetry results reveal that the lower critical solution temperature of the developed composite systems remained almost unchanged (<1°C increase only). Such a characteristic indicated that the thermosensitivity of the PNIPAAm hydrogel was not distinctively affected by the addition of PLGA NPs. In conclusion, an approach was demonstrated for the successful preparation of a new hybrid hydrogel system having improved drug‐release behavior with retained thermosensitivity. The developed systems have enormous potential for many biotechnological applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40625.  相似文献   

8.
Multifunctional hydrogels based on chitosan–quercetin (CHITQ) conjugate are prepared by a thermo‐induced radical procedure in the presence of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and N,N′‐methylenebis(acrylamide) (MEBA). At first, quercetin (Q) is grafted onto chitosan backbone with a functionalization degree of 275 mg of Q per gram of conjugate, as calculated by 1H‐NMR analyses to impart antioxidant properties to the polysaccharide. Then, a pH and temperature sensitive hydrogel was obtained by involving CHITQ and NIPAAm in the polymerization reaction. The accessibility of phenolic moieties is modified in response to the hydrogel swelling/deswelling, as confirmed by antioxidant tests performed at different temperatures. Dual stimuli‐responsive hydrogels are proposed for the delivery of caffeine as model drug. The release profiles of caffeine depict a system particularly performing as on/off device at acidic pH with excellent applicability prospects.  相似文献   

9.
A pH‐sensitive hydrogel [P(CE‐co‐DMAEMA‐co‐MEG)] was synthesized by the free‐radical crosslinking polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether methacrylate(MPEG‐Mac) and methoxyl poly(ethylene glycol)‐poly(caprolactone)‐methacryloyl methchloride (PCE‐Mac). The effects of pH and monomer content on swelling property, swelling and deswelling kinetics of the hydrogels were examined and hydrogel microstructures were investigated by SEM. Sodium salicylate was chosen as a model drug and the controlled‐release properties of hydrogels were pilot studied. The results indicated that the swelling ratios of the gels in stimulated gastric fluids (SGF, pH = 1.4) were higher than those in stimulated intestinal fluids (SIF, pH = 7.4), and followed a non‐Fickian and a Fickian diffusion mechanism, respectively. In vitro release studies showed that its release rate depends on different swelling of the network as a function of the environmental pH and DMAEMA content. SEM micrographs showed homogenous pore structure of the hydrogel with open pores at pH 1.4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40737.  相似文献   

10.
This work describes the preparation, the swelling properties and the potassium diclofenac (KDF) release profile of hydrogels of gum arabic (GA), N′,N′‐dimethylacrylamide, and methacrylic acid. In order to convert GA into a hydrogel, the polysaccharide was vinyl‐modified with glycidyl methacrylate. The hydrogels showed pH‐responsive swelling changes, which were more expressive in the basic environment. Release data of KDF were adjusted to a diffusion‐based kinetic model that provides an important insight on affinity of the drug for hydrogel and solvent, which may be the leading parameter for release of guest molecules from polymers. The KDF release from the hydrogels into simulated intestinal fluid decreases when the amount of modified GA increases. This was demonstrated to be due to the higher affinity of KDF for GA‐richer hydrogel, which makes the anti‐inflammatory release less favorable. The analysis of released drug half‐time (t1/2 = 16.10 and 21.51 h) indicated sustained release characteristics. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43319.  相似文献   

11.
Magnetic‐field‐sensitive gel, called ferrogel, was prepared by a two‐step procedure in which first step requires synthesis of the poly(Ntert‐butylacrylamide‐co‐acrylamide) [P(NTBA‐co‐AAm)] hydrogel and during second step magnetite (Fe3O4) particles were formed in the hydrogel via coprecipitation of Fe(II) and Fe(III) ions in alkaline medium at 70°C. The obtained ferrogel was characterized by attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy combined with energy dispersive spectroscopy, and electron spin resonance measurements. The magnetic responsive of the ferrogel was also investigated by applying magnetic field to the ferrogel. The extent of a bending degree of the ferrogel depends on the applied magnetic field strength. In addition, the magnetic responsive studies also indicated that formed magnetite content in the hydrogel is high enough to achieve considerable magnetic response to external magnetic field. As a result, the P(NTBA‐co‐AAm) ferrogel may be useful for potential applications in magnetically controlled drug release systems, magnetic‐sensitive sensors, and pseudomuscular actuators. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A pH‐ and temperature‐responsive semi‐interpenetrating copolymer PEG6000/poly(NIPA‐co‐AMPS) (PEG/AMPS‐co‐NIPA SIPN), for short PEG SIPN, was made by ammonium persulfate‐initiated suspension copolymerization of N‐isopropylacrylamide, 2‐acrylamido‐2‐methylpropanesulphonic acid, and N,N′‐methylene‐bis‐acrylamide (MBAA; crosslinker) in the presence of PEG6000. The PEG SIPN copolymer matrices containing nanostructures made in the high‐temperature copolymerization resulted in channels for PEG and facile migration of drugs. In drug encapsulation or drug‐loading process, one can easily ignore or pay less attention to the interaction between a drug and its encapsulation materials; however, the ignored interactions may induce problems in drug properties or the release behavior in use. Sodium diclofenac (DFNa) precipitates as the carboxylic acid form in an acidic environment, and it is challenging to encapsulate sodium diclofenac in such an acidic matrix without precipitation of the sparingly soluble acid form of DFNa on the surface of the polymer substrate. To avoid bulky precipitation in drug loading, an in situ loading technique was developed for producing gel spheres with DFNa uniformly distributed in the polymer matrix. The technique is based on fast polymerization of spherical droplets of a pregel solution in which the drug is dissolved. Diffusion‐loading prodrugs were made in comparison with in situ loading prodrugs in thermal, release kinetics, and release behavior. Drug release profiles (in pH 7.4 phosphate buffer) show that the new drug loading technique gives controlled release during a period of about 7 days at 37°C. By contrast, gel spheres loaded with sodium diclofenac using the conventional diffusion technique produced almost total release of the drug within about 24 h. The thermal stability of sodium diclofenac, the PEG/AMPS‐co‐NIPA SIPN, and the prodrugs made with the SIPN and sodium diclofenac was studied. A near zero‐order release kinetics was found in the in vitro release of sodium diclofenac with in situ loading PEG SIPN prodrug. We have, for the first time, studied sodium diclofenac release behavior from the PEG SIPN hydrogel systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A series of pH‐temperature dual stimuli‐responsive random copolymers poly[N,N‐dimethylaminoethyl methacrylate‐co‐poly(poly(ethylene glycol) methyl ether methacrylate][poly(DMAEMA‐co‐MPEGMA)] were synthesized by free radical polymerization. The supramolecular hydrogel was formed by pseudopolyrotaxane, which was prepared with the host‐guest interactions between α‐cyclodextrin (α‐CD) and poly(ethylene glycol) (PEG) side chains. Fourier transform infrared (FT‐IR), nuclear magnetic resonance (1H NMR), and X‐ray diffraction (XRD) confirmed the structures of the hydrogels. The pH‐temperature dual stimuli responsive properties of the hydrogels were characterized by rheometer. Finally, the controllable drug release behavior of the hydrogel, which was used 5‐fluorouracil (5‐Fu) as the model drug, was investigated at different temperatures and different pH values. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43279.  相似文献   

14.
The layer‐by‐layer assembly technique is a method that widely used in the preparation of nanostructured multilayer ultrathin films. We fabricated a hydrogel nanocomposite film by alternating the deposition of a core–shell poly[(dimethylimino)(2‐hydroxy‐1,3‐propanedily) chloride] (PDMIHPC)–laponite solution and poly(acrylic acid). The growth of the deposition procedure was proven by ultraviolet–visible spectroscopy and spectroscopic ellipsometry. The surface morphology of the films was observed by scanning electron microscopy. The films could reversibly load and release methylene blue (MB) dye, which was used as an indicator. It took about 4.5 h to reach loading equilibrium at pH 9.0. The loading capacity of the film for MB was as large as 4.48 μg/cm2 per bilayer because of the introduction of the core–shell PDMIHPC–laponite as a film component. Nearly 90% of MB was released at pH 3.0 or in a 300 mM NaCl solution within 2.5 h. The loading and release processes were greatly influenced by the ionic strength and pH value of the MB solution. The hydrogel nanocomposite film showed good pH‐triggered loading‐release reversibility and suggested potential applications in controlled drug‐delivery systems and smart materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39352.  相似文献   

15.
Recently, much attention has been focused on the development of gel based formulations for controlled drug delivery applications. Herein, we report the effect of the ionic (gum acacia) and the non‐ionic (guar gum) gums on the properties of the bigels prepared with fluid‐filled organogels. The microscopic study suggested the presence of flocculated structure in guar gum bigel, whereas, a de‐flocculated structure was observed in gum acacia bigel. Infrared spectroscopy suggested the presence of polysaccharides in the bigels. The mechanical properties of the guar gum bigel were better than gum acacia bigel. The conductivity and the release properties suggested superior properties of gum acacia bigel. This indicated that the ionic nature of acacia bigel played a major role in controlled drug delivery, making it a potential bigel for desired pharmaceutical applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42561.  相似文献   

16.
The effect of incorporating a hydrophilic monomer into poly(N‐isopropylacrylamide) (polyNIPA) hydrogels on the equilibrium swelling and the volume phase transition temperature is reported here. A nonionizable monomer (acrylamide) and three ionizable monomers (itaconic acid, 2‐ethoxyethyl monoitaconate, and 2,2‐(2‐ethoxyethyl) monoitaconate) were studied. Hydrogels with larger swelling capacity than that of the polyNIPA hydrogel were obtained. With the exception of the hydrogel containing 2,2‐(2‐ethoxyethyl) monoitaconate, which did not exhibit the de‐swelling phenomena, the rest showed a volume phase transition. The hydrogels containing 85 wt % acrylamide and 15 wt % comonomer presented the higher shrinking ratio. For some compositions, the Tc of the polyNIPA hydrogel was within the desired temperature range (38–41°C) for controlled‐drug delivery in the human body. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
A polyelectrolyte complex hydrogel, poly (N,N‐dimethylaminoethyl methacrylate/acrylic acid‐co‐acrylamide) hydrogel designed as PDMEAA, was prepared by the free radical copolymerization in aqueous solutions. Without chemical crosslinker, PDMEAA hydrogel network was formed by electrostatic attraction of the proton‐transfer between acrylic acid and N,N‐dimethylamino ethyl methacrylate. Since the electrostatic attraction could be weakened by the application of electric field, PDMEAA hydrogel was decomposed under contacted electric field. Various factors such as gel composition, the species and concentration of electrolytes, voltage, and the experimental set‐ups, could effect the decomposing process of PDMEAA hydrogel. In CaCl2 and MgCl2 solutions, PDMEAA hydrogel had no change under electric field. And in high concentration of NaCl and Na2SO4 solutions, PDMEAA hydrogel has been eroded linearly with the increasing time applied electric field. In low concentration of NaCl and Na2SO4 solutions, however, a swelling process was found before the erosion. The stimuli‐responsive mechanism was investigated through scanning electron microscope (SEM) and gel permeation chromatography (GPC). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
In the present study, the synthesis of novel semi‐interpenetrating network (Semi‐IPN) hydrogel based on gum rosin alcohol‐psyllium (GrA‐Psy) has been reported. (Gum rosin alcohol‐psyllium)‐crosslinked‐poly(acrylic acid) [termed as (GrA‐Psy)‐cl‐poly (AA)] was synthesized using potassium persulphate (KPS) as an initiator and N, N? methylene‐bis‐acrylamide (MBA) as crosslinker by free radical graft co‐polymerization technique. The prepared semi‐IPN was characterized using FTIR, XRD, and FE‐SEM. Further, the synthesized hydrogel was evaluated for the removal of malachite green (MG) dye from aqueous solution. Dye adsorption data was analyzed through various isotherm and kinetic models. Thermodynamic parameters and reusability of the synthesized adsorbent were also assessed. POLYM. ENG. SCI., 59:1416–1427 2019. © 2019 Society of Plastics Engineers  相似文献   

19.
Composite hydrogels of poly(acrylamide‐co‐acrylate) with rice husk ash (RHA) were synthesized and studies of the swelling variables were accomplished comparatively with commercial polyacrylamide gel and PAMACRYL, a poly(acrylamide‐co‐acrylate) hydrogel without RHA. FT‐IR and WAXS were the techniques employed for characterizing a series of hydrogel obtained by varying the percentage of RHA (1, 2, 5, 10, and 20 wt %) and the amount of crosslinking agent (0.05, 0.1, and 0.2 mol %) relative to sum of AAm and AAc. Superabsorbent hydrogel with Weq > 800 g H2O/g gel was obtained with percentage of 10 wt % of RHA and 0.1 of crosslinking agent mol %. The hydrogel showed to be sensitive to the pH variation and to the presence of salts. The hydrogels, even though submitted through cycles of drying and swelling, preserved their superabsorbent characteristics and demonstrated better water absorbance properties when compared with commercial polyacrylamide gel. The composite hydrogels of poly(acrylamide‐co‐acrylate) with RHA presented good characteristics to be applied as soil conditioner for using in agriculture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A novel temperature responsive copolymer, poly[2‐(2‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol)methacrylate‐co‐N‐hydroxymethyl acrylamide] [P(MEO2MA‐co‐OEGMA‐co‐HMAM)], was synthesized by atom transfer radical polymerization. pH responsive poly(methacrylic acid) (PMAA) was synthesized by reversible addition‐fragmentation chain transfer polymerization. After the hydroxyl groups on P(MEO2MA‐co‐OEGMA‐co‐HMAM) were transformed into azide groups and the carboxyl groups on PMAA were transformed into alkyne groups respectively, a novel temperature and pH responsive hydrogel was fabricated by click chemistry between the azide‐P(MEO2MA‐co‐OEGMA‐co‐HMAM) and alkyne‐PMAA in the presence of CuSO4 and sodium ascorbate in aqueous solution. The rheological kinetics of gel formation demonstrated that gelation had commenced within 5 min at 25 °C, since then the storage modulus (G′) was higher than the loss modulus (G″). SEM images of hydrogel morphology and the swelling ratios of hydrogel at different temperatures and pH proved that the formed hydrogel had temperature and pH sensitivities. Bovine serum albumin was used as a model to evaluate the sustained release of the hydrogel; the results indicated that the hydrogel was a promising candidate for controlling protein drug delivery. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号