首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 453 毫秒
1.
陶瓷中空纤维透氧膜的制备与性能   总被引:3,自引:0,他引:3  
应用相转化法制备了La0.6Sr0.4Co0.2Fe0.8O3-α(LSCF)氧离子-电子混合传导陶瓷中空纤维膜, 该陶瓷中空纤维膜具有由多孔层和致密层组成的非对称结构. 经 1300℃的4h烧结后, 可得到致密的LSCF陶瓷中空纤维膜. 烧结后, LSCF粒度变大而其钙钛矿型晶相结构没有发生变化. LSCF中空纤维膜的透氧速率大大高于一般管式膜的氧透量.  相似文献   

2.
研究了以焦炉煤气为原料在BaCo0.7Fe0.2Nb0.1O3-δ(BCFNO)透氧膜反应器中制合成气。实验结果表明,BCFNO膜反应器的自催化性能差。加入催化剂后,膜反应器的重整性能得到明显提高,在875℃,焦炉煤气中甲烷转化率为87.0%,产物中氢气和一氧化碳选择性分别为78.3%、105.6%,透氧量达到15.8ml/(cm2.min)。焦炉煤气中的甲烷在膜反应器中反应路径为首先焦炉煤气中的氢气与膜片透过去的氧反应生成水,然后甲烷再与水重整生成氢气和一氧化碳。实验过程中,透氧膜没有出现破裂,BCFNO透氧膜反应器在富氢的焦炉煤气下显示出很好的稳定性。  相似文献   

3.
采用干湿法纺丝技术制备Sr0.7Ba0.3Fe0.9Mo0.1O3-δ(SBFM)中空纤维支撑体, 以Nb2O5掺杂的SrCo0.8Fe0.2O3-δ (SCFNb)为膜材料, 采用旋转喷涂结合共烧结技术制备出担载型SCFNb/SBFM中空纤维氧渗透膜。借助于XRD、SEM、热膨胀分析、透氧及膜反应性能测试等手段, 分别对样品的晶相结构、膜微观结构、支撑体与膜层的烧结行为、膜的氧渗透通量及膜反应性能进行了研究。结果表明, 膜层与支撑体的晶相结构仍保持钙钛矿主体相。支撑体具有单一海绵孔/指状孔结构, 膜厚为5 μm且致密无缺陷, 膜层与支撑体结合良好。在900℃时, 氧渗透通量达到0.74 mL/(cm2·min)。850℃下甲烷部分氧化膜反应稳定操作超过200 h, 稳态下氧渗透通量为4.5 mL/(cm2·min)。研究表明, 担载型SCFNb/SBFM中空纤维氧渗透膜具有较高的氧渗透通量, 同时具有良好的膜反应稳定性。  相似文献   

4.
采用干湿相转化法制备了聚砜(PSF)中空纤维超滤膜;将PDMS、交联剂、催化剂按一定的比例溶解在正己烷中,采用浸渍法将PDMS溶液涂在PSF中空纤维膜的外表面,制备了PDMS/PSF中空纤维复合膜.在料液温度为50℃、渗透物侧压力lmmHg、料液乙醇含量5%条件下,考察了涂膜液中PDMS浓度、交联剂、催化剂用量以及涂膜次数等因素对膜渗透汽化性能的影响.  相似文献   

5.
天然气(主要成分为甲烷)重整是天然气高效清洁利用的重要途径,重整获得富含氢气的重整气,可供固体氧化物燃料电池进行高效发电。甲烷水蒸气重整需要反应器以及负载其上的重整催化剂,基于3D打印技术的多孔结构具有良好的耐高温、抗氧化和结构稳定性等特点,负载Ni基催化剂用于甲烷催化重整可有效提升反应器稳定性,但相关研究较少。采用浸渍法将Ni-CeO2/γ-Al2O3催化剂负载于3D打印制备的多孔结构和金属泡沫反应器,通过催化剂形貌、分布规律、相结构以及热稳定性的表征,研究了重整反应温度、浆料配比、反应器结构等因素对甲烷水蒸气重整效果的影响。结果显示,催化剂的最佳配比是PVA含量为3.5%(若无特殊说明,均为质量分数),Ni含量为19%,CeO2和γ-Al2O3的含量分别为16%和2.5%。重整测试结果表明,负载催化剂前,重整反应温度低于700℃时,Inconel625和泡沫Ni多孔反应器重整得到的氢气浓度均低于13%(体积分数),而重整反应温度高于800℃时,Inco...  相似文献   

6.
杨志彬  丁伟中 《功能材料》2012,43(24):3372-3376
透氧膜反应器稳定性除受膜材料本身性能和膜反应器所处气氛影响外,重整过程所用催化剂与膜材料的反应问题同样值得关注。以透氧膜反应器焦炉煤气甲烷部分氧化重整用BCFNO膜材料为研究对象,分别通过SEM和XRD分析Al2O3、MgO、YSZ、β分子筛、TiO2等催化载体材料与BCFNO透氧膜材料的长时间反应情况,目的是为BCFNO透氧膜反应器所用催化剂材料选择提供依据。实验结果表明β分子筛、Al2O3和TiO2容易与BCFNO透氧膜材料反应形成新的相。MgO也与BCFNO反应,但反应较小,YSZ不与BCFNO发生反应。  相似文献   

7.
基于相分离理论,采用干湿法纺丝技术结合后续的烧结工艺,制备出SrCo_(0.4)Fe_(0.4)Zr_(0.2)O_(3-δ)(SCFZ)混合导体中空纤维膜.借助于XRD、SEM、热膨胀分析以及氧渗透性能分析等手段,分别对样品的晶相结构,膜的微观形貌,中空纤维膜生坯的烧结行为以及膜的氧渗透通量进行了研究.结果表明,中空纤维膜晶相结构由钙钛矿主体相、SrZrO_3相及Co_3O_4相组成,SrZrO_3相含量随烧结温度升高而增大.膜断面邻近内外皮层均存在指状孔,膜壁中部区域为海绵孔,此结构由聚合物溶液沉浸相分离形成.综合烧结行为,XRD及SEM结果,再结合气密性和机械强度测试,确定生坯适宜的烧结温度为1240℃.在此条件下制备的SCFZ中空纤维膜力学性能优异,三弯矩断裂强度达到74.19MPa,在850℃时,空气/氦气梯度下的氧渗透通量为2.9×10~(-7)mol/(cm~2·s),并且在160 h的测试周期内保持稳定.  相似文献   

8.
炭膜具有优异的热稳定性、化学稳定性和气体分离性能.以聚酰亚胺中空纤维膜为前驱体,经过Tg附近退火预处理(250、300和350℃),进而高温炭化制备高性能中空纤维炭膜,研究了预处理条件对炭膜结构和气体分离性能的影响.结果表明,当退火预处理温度升高时,中空纤维炭膜的结构更加致密,其CO2/CH4和H2/CH4选择性提高,气体通量下降.尤其是当退火预处理温度为350℃时,与未经预处理的中空纤维炭膜相比,其CO2/CH4和H2/CH4选择性分别提高了98%和195%.同时,研究了渗透温度和压力对气体分离性能的影响,采用HIM(氦离子电镜)、FTIR和XRD对中空纤维炭膜的结构进行了表征.  相似文献   

9.
聚丙烯中空纤维膜在纯水预处理、制药纯化分离、饮料酒水浓缩、工业废液回收等领域有广泛的应用.为了提高聚丙烯基中空纤维膜的耐氧化性与使用寿命,本研究通过添加抗氧剂和改进成型工艺来制备高性能聚丙烯中空纤维膜.具体探讨了最佳抗氧剂添加量对膜抗氧化性的影响,经过氧化实验36 h后,添加0.4%抗氧剂1076可使聚丙烯中空纤维膜的水接触角提高67%,同时拉伸强度降低10%,最大伸长率降低15.4%.在膜蒸馏实验中,添加0.3%抗氧剂1010的耐氧化聚丙烯中空纤维膜在运行30 h后,对Al3+的截留率依旧可达99.7%.总之,抗氧剂的添加显著提高了聚丙烯中空纤维膜在膜蒸馏应用中的截留性质和使用寿命.  相似文献   

10.
双相混合导体膜在高温下能够同时传导氧离子和电子, 具有稳定性好、膨胀系数低、机械强度高和成分可调等优点, 可以作为反应器应用于甲烷部分氧化制合成气(POM)。但双相混合导体膜的透氧率较低, 成为亟待解决的问题。本文从透氧机理入手详细阐述了氧渗透过程的影响因素。在此基础上综述了目前提高双相混合导体膜透氧率的措施, 包括了采用混合导体作为电子导电相、降低电子导电相形成连续渗流网络的体积比阀值和减小双相晶粒尺寸, 以及宏观上制备出不对称膜、管状膜和中空纤维膜进一步降低膜厚、增大表面积以提高透氧率。最后指出双相混合导体膜在未来需要重点解决的一些问题。  相似文献   

11.
用湿化学方法合成了SrCo0.5FeO3.25(SC5FO),La0.15Sr0.85Ga0.3Fe0.7O3-δ(LSGFO)和Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCFO)三种透氧膜材料.采用H2-TPR、XRD和透氧测定,并结合膜反应等方法对它们的性质进行了比较研究.LSGFO与BSCFO具有较高的相结构稳定性,而SC5FO较差.LSGFO具有很高的抗还原能力,而BSCFO较差,但它具有优异的相结构可逆性.在air/He氧浓差梯度下,LSGFO和SC5FO导体膜的透氧量较低;BSCFO具有很高的氧渗透能力,850℃下,透氧量高达1.16[STP]mL/cm2·min.SC5FO膜反应器在POM反应开始不久,因为反应端膜表面的材料组成被反应气还原而出现严重的漏气现象,并最终导致实验失败.BSCFO与LSGFO膜反应器成功地应用到POM反应中,进行了长时间的稳定操作,稳态下透氧量分别高达11.5[STP]mL/cm2·min(875℃)与4.0[STP]mL/cm2·min(950℃).  相似文献   

12.
采用相转化/高温烧结技术方法制备了多孔钇稳定氧化锆(YSZ)中空纤维膜, 中空纤维膜的外径1.92 mm, 壁厚为0.21 mm。SEM分析表明: 纤维膜为典型的三明治结构, 靠近膜内外表面为指状孔, 中间区域为海绵状层。采用阿基米德法测得其孔隙率为54%。用泡点法测得其平均孔径为0.56 μm。通过表面接枝氟硅烷将其亲水性的表面改变为疏水性。真空式膜蒸馏实验表明YSZ中空纤维膜具有优异的盐水淡化性能。当膜的外侧与温度为80℃、浓度为4wt%的循环盐水接触, 膜的内侧用真空泵抽至4×103 Pa时, 膜的水渗透通量高达48.3 L/(m2•h), 脱盐率大于99.7%。  相似文献   

13.
中空纤维陶瓷膜具有装填密度高, 传质阻力低, 使用寿命长等优点, 被广泛用于膜分离领域。高度非对称结构的中空纤维膜有利于同时实现高通量与高截留率, 本研究采用共挤出法制备双层中空纤维陶瓷复合膜, 内外层纺丝液分别掺杂平均粒径为1 μm和300 nm的α-Al2O3粉体。系统考察了内层纺丝液TiO2掺杂量、外层纺丝液Al2O3/聚醚砜(PESf)质量比和煅烧温度对膜的结构与性能的影响。结果表明, 在内层纺丝液TiO2掺杂量为2wt%, 外层纺丝液Al2O3/PESf质量比为5.60, 烧结温度为1350 ℃的最优条件下, 中空纤维膜断裂负荷为24 N、平均孔径为0.15 μm、去油率为97.5%。  相似文献   

14.
以聚全氟乙丙烯(FEP)为成膜聚合物, 采用熔融纺丝-拉伸法制备FEP中空纤维膜, 研究了后拉伸倍数对FEP中空纤维膜结构与性能的影响。结果表明, 初生FEP中空纤维膜结构较为致密, 拉伸后出现微孔结构。随着拉伸倍数的提高膜的孔隙率和氮气通量明显增大, 而液体渗透压(LEP)有所降低。将所得FEP中空纤维膜用于减压膜蒸馏(VMD)研究, 并将其与常规熔融纺丝-拉伸法聚丙烯(PP)中空纤维膜比较。结果表明, 所得FEP中空纤维膜的疏水性能、液体渗透压力和力学强度均优于PP中空纤维膜。较强的疏水性能使其稳定运行而不被液体渗透, 脱盐率稳定在99%以上。同时, FEP中空纤维膜具有较大的内径(0.74 mm), 在保证较高脱盐率前提下可采用内压式减压膜蒸馏, 且真空膜蒸馏通量随着进料温度的升高显著增高。  相似文献   

15.
以聚丙烯中空纤维作为无泡曝气膜生物反应器(MABR)生物膜载体,采用循环挂膜法进行聚丙烯中空纤维表面生物膜的培养,研制出一台小型MABR实验装置.在对生活污水的实验研究中获得了对化学需氧量(COD)和固体悬浮物(SS)良好的去除效果.研究表明:中空纤维内腔氧气压力在0.02~0.1 MPa的范围内对MABR去除COD的能力具有较小的影响;当反应器中污水的循环次数达到7.5次/h时,污水的循环流速对MABR的COD降解效果没有显著影响.在适宜的条件下,HRT为10 h时,MABR能够较容易地使污水的出水COD保持在50 mg/L以下,SS保持在15 mg/L以下.  相似文献   

16.
TiO2膜具有亲水性强和热化学稳定性好等优点而用于超滤分离, 但是TiO2膜以管式膜为主, 渗透通量低且制备周期长。为了提高TiO2膜的渗透通量, 并缩短膜的制备周期, 本工作以钛酸四丁酯为前驱体, 采用超声辅助溶胶-凝胶法制备高通量的中空纤维负载型TiO2超滤膜。系统考察了硝酸与钛酸四丁酯的摩尔比(酸钛比)、超声时间和煅烧温度对TiO2溶胶粒径及膜截留性能的影响。结果表明:当酸钛比为0.25时, 溶胶的平均粒径为3252 nm, 采用超声处理30 s后, 平均粒径减小至1817 nm。采用超声后的溶胶循环涂膜并在350 ℃煅烧两次后可得到完整无缺陷的中空纤维TiO2超滤膜, 膜层平均厚度为1 μm, 膜的纯水渗透通量为145 L·m-2·h-1·bar-1(1 bar=0.1 MPa), 葡聚糖截留分子量为2586 Da, 对应的平均孔径为2.5 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号