首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A photonic integrated circuit with an InGaAs/InGaAsP multiple-quantum-well (MQW) traveling-wave optical amplifier and a grating-assisted vertical-coupler filter as a noise filter have been demonstrated. A fiber-to-amplifier/filter gain of ~0.5 dB and a 3-dB filter bandwidth (FWHM) of ~70 Å at 1.56 μm filter center wavelength have been achieved. This photonic circuit is potentially suitable as a building-block for preamplifier lightwave receivers or high-gain, high-power optical amplifiers which are essential for optical communication systems and lightwave networks  相似文献   

2.
This paper demonstrates a novel optical preamplifier using optical modulation of amplified spontaneous emission (ASE) emitted from a saturated semiconductor optical amplifier (SOA). Requirements on optical alignments and antireflection coating for SOAs can be relaxed and the elimination of an optical filter gives us a large tolerance of an input light wavelength in the proposed optical preamplifier. A small-signal gain of a fabricated preamplifier was over 13.5 dB for an input power of below -20 dBm. An optical gain bandwidth was over 60 nm. We measured the small-signal response of the optically modulated ASE. The 3 dB bandwidths at SOA bias currents of 200, 300, and 400 mA were 5.8, 12.6, and 16.5 GHz, respectively. We also investigated improvements in receiver sensitivities with the proposed optical preamplifier. Our calculation shows a possibility of 10 dB improvement in receiver sensitivities by using the optical preamplifier at 10 Gb/s. The measured receiver sensitivity was -22.7 dBm at 10 Gb/s with the optical preamplifier, which is corresponding to an improvement of 2.5 dB in the receiver sensitivity. Further improvements of the receiver sensitivity can be expected by optimizing the structure of SOAs for saturating ASE.  相似文献   

3.
We report a novel erbium doped fiber preamplifier design with a combination of high gain (>40 dB) and low noise figure (3 dB) at 1556 nm for 80 mW of 980 nm pump power. The co-directional single pumped amplifier employs a composite two stage arrangement in which the second stage is pumped with recycled pump not used in the first stage. In addition, we contrast the amplifier performance trade-offs with the insertions of an isolator or a band pass filter or both in between the two amplifier sections. Finally, we demonstrate a receiver sensitivity of -37 dBm (156 photons/bit) with a 10 Gb/s optical preamplifier regenerator  相似文献   

4.
We developed a hybrid integrated optical module for 1.3/1.55-μm wavelength-division multiplexing (WDM) full-duplex operation. The optical circuit was designed to suppress the optical and electrical crosstalk using a wavelength division multiplexing filter, and an optical crosstalk of -43 dB and an electrical crosstalk of -105 dB were achieved with a separation between the transmitter laser diode and the receiver photodiode of more than 9 mm. We used the optical circuit design to fabricate an optical module with a bare chip preamplifier in a package. This module exhibited a full duplex operation of 156 Mbit/s with a minimum sensitivity of -35.2 dBm at a bit error rate of 10-10  相似文献   

5.
It is shown experimentally and theoretically that it is possible to construct a passive microwave fiber-optic link (defined as one without active electrical or optical amplification) exhibiting an RF throughput gain of up to 50 dB and a noise figure approaching 0 dB. The key ingredients are quantum well gain-lever laser transmitters and proper impedance matching. Disregarding the optical transmission aspect of the link, it can be regarded as an RF low-noise preamplifier with performances competitive with conventional microwave amplifiers.<>  相似文献   

6.
Introduction of monolithic integrated circuit technology to high bit rate optical repeater is studied. Monolithic integrated amplifiers are realised for a 400 Mbit/s optical repeater such as a preamplifier, AGC amplifier and postamplifier, using advanced silicon bipolar process technology. An equalising amplifier with four monolithic amplifiers got 66 dB maximum gain, 35 dB variable gain and 350 MHz band-width with 550 mW power consumption.  相似文献   

7.
Olsson  N.A. Garbinski  P. 《Electronics letters》1986,22(21):1114-1116
A 1.5 ?n optical preamplifier was used to improve the sensitivity of a PINFET receiver by 12dB. The resonant optical amplifier provided 17dB of fibre-to-fibre gain including coupling losses in an isolator and a narrowband optical filter. The achieved sensitivity, -45.6 dBm at 500 Mbit/s, or 420 photons/bit, is the best reported for any direct-detection receiver and a factor of two better than previous results using optical amplifiers. However, the results are virtually identical to the best APD receiver results.  相似文献   

8.
The authors demonstrate a 1.55 μm wavelength multiquantum well semiconductor optical amplifier, integrated with bulk layer electroabsorption modulators and passive waveguide beam expanders at the input and output ports. The device has a fibre to fibre gain of 9 dB, an extinction ratio of 15 dB per modulator, a spectral range >35 nm, and polarisation sensitivity <1 dB  相似文献   

9.
We fabricated an antireflection (AR)-coating-free semiconductor optical amplifier (SOA) with an absorbing region for an optical preamplifier. In the fabricated SOA, the resonance of light was fully suppressed so that the amplitude of the ripple of amplified spontaneous emission (ASE) spectra was as small as 0.36 dB, which is comparable to conventional SOAs with AR coating at both facets. We formed an optical preamplifier using the AR-coating-free SOA. The gain saturation of the SOA gives us the signal conversion to ASE and the amplification of the signal. The small-signal fiber-to-fiber and chip gain of the preamplifier were 11.4 and 20.0 dB, respectively. The 3-dB optical gain bandwidth of the preamplifier was about 30 nm.  相似文献   

10.
The authors discuss the development of ICs (integrated circuits) for a preamplifier, a gain-controllable amplifier, and main amplifiers with and without a three-way divider for multigigabit-per-second optical receivers using a single-ended parallel feedback circuit, two (inductor and capacitor) peaking techniques, and advanced GaAs process technology. An optical front-end circuit consisting of a GaAs preamplifier and an InGaAs p-i-n photodiode achieves a 3-dB bandwidth of 7 GHz and -12-dBm sensitivity at 10 Gb/s. Moreover, a gain-controllable amplifier obtains a maximum gain of 15 dB, a gain dynamic range of 25 dB, and a 3-dB bandwidth of 6.1 GHz by controlling the source bias of the common-source circuit. Gain, 3-dB bandwidth, and output power of the main amplifier with the three-way divider are 17.4 dB, 5.2 GHz, and 5 dBm, respectively. These ICs can be applied to optical receivers transmitting NRZ signals in excess of 7 Gb/s  相似文献   

11.
In this paper, the available analog link performance of integrated transmitters containing a sampled-grating distributed Bragg reflector laser, a semiconductor optical amplifier, and a modulator is evaluated. It is found that to provide a link gain and a low-noise figure, an RF preamplifier is required, and for this reason, spurious-free dynamic range (SFDR) including a preamplifier has been evaluated. An SFDR of 110-dBHz2/3, a noise figure of 5.4 dB, and link gain of 6.9 dB at 5 GHz is obtained. It is further investigated how link SFDR can be improved by linearization techniques. Two novel approaches are proposed and demonstrated: first, predistortion by extraction of nonlinear components from an integrated second modulator exposed to the same wavelength, optical power and temperature for matched nonlinear terms; second, a novel linearized modulator configuration balancing electroabsorption and Mach-Zehnder modulation that can reach a null for both second- and third-order intermodulation products at a single bias point.  相似文献   

12.
Erbium-doped fiber amplifiers (EDFAs) with enhanced optical gain obtained by incorporating narrow-bandpass optical filters into the amplifier length are studied. It is shown in theory that it is possible to increase optical gain by more than 10 dB for optical signals around the wavelength of 1.55 μm, compared with conventional EDFAs without filters. It is also shown that the gain improvement at longer wavelengths away from the amplifier gain peak is much higher than that of the EDFA with an optical isolator within the amplifier length. The optimum filter position is found to be around 42% of the total amplifier length from the input end. The effects of filter insertion loss and pump loss are discussed. This amplifier can be used as an optical preamplifier in a receiver for a wide range of wavelengths  相似文献   

13.
采用0.5μm GaAs PHEMT工艺和台面光刻互连工艺研制了一种850nm光接收机前端单片电路,包括金属-半导体-金属光探测器和跨阻前置放大器。探测器光敏面积约2000μm2,电容小于0.15pF,4V偏压下的暗电流小于14nA。跨阻前置放大器-3dB带宽接近10GHz,跨阻增益约43dBΩ。光接收机前端在输入2.5Gb/s非归零伪随机二进制序列调制的850nm光信号下得到较为清晰的输出眼图。  相似文献   

14.
An erbium-doped fiber amplifier was implemented in a closely spaced FDMA-FSK (frequency-division-multiple-access-frequency-shift-keyed) optical star network with a signaling rate of 1 Gb/s per channel. The fiber preamplifier, which is laser-diode pumped, increases the sensitivity of the direct-detection avalanche photodiode (APD) receiver by 14 dB, allowing for an increased number of network users. This enhanced sensitivity nearly corresponds to all of the available gain of the amplifier. Furthermore, the amplifier noise is optimally filtered by means of a wide band interference filter cascaded with a narrow band fiber Fabry-Perot filter  相似文献   

15.
Optical preamplifier receiver for spectrum-sliced WDM   总被引:1,自引:0,他引:1  
Spectrum-slicing provides a low-cost alternative to the use of multiple coherent lasers for wavelength division multiplexing (WDM) applications by utilizing spectral slices of a single broadband noise source for creating the multichannel system. In this paper we analyze the performance of both p-i-n and optical preamplifier receivers for spectrum-sliced WDM using actual noise distributions, and the results are compared with those using the Gaussian approximation. This extends prior results of Marcuse for the detection of deterministic signals in the presence of optical amplifier and receiver noise. Although the methodology is similar, the results are considerably different when the signal is itself noise-like. For the case of noise-like signals, it is shown that when an optical preamplifier receiver is used, there exists an optimum filter bandwidth which minimizes the detection sensitivity for a given error probability. Moreover the evaluated detection sensitivity, in photons/bit, represents an order of magnitude (>10 dB) improvement over conventional detection techniques that employ p-i-n receivers. The Gaussian approximation is shown to be overly conservative when dealing with small ratios of the receiver optical to electrical bandwidth, for both p-i-n and preamplifier receivers  相似文献   

16.
阐述了光纤通信前置放大器的设计原理,分析了光接收机中PIN二极管和GaAsFET器件的信号模型和噪声模型,提取了放大器用GaAsFET器件的模型参数(包括大信号、小信号和噪声模型参数)。利用PSPICE程序对光前置放大器进行了模拟分析和优化设计,并实际制作了用于2.4Gb/s光纤通信的PIN-HEMT前置放大器。实测结果表明放大器3dB带宽达到DC~4.4GHz,增益为18±1dB;加入PIN二极管后的光接收模块的3dB带宽为DC~1.688GHz,满足了2.4Gb/s光纤通信的需要。  相似文献   

17.
Monolithically integrated planar front-illuminated InGaAs dual pin photodiodes (PD) with a series resistance less than 10 Omega have been fabricated for optical coherent receiver application. The PDs exhibit a very low dark current around 100 pA at -10 V, a high quantum efficiency (over 90%) and a 3 dB bandwidth of more than 10 GHz. The photosensitive area diameter is 50 mu m/sup 2/, which offers large fibre alignment tolerances. A 2.5 dB improvement of the average input noise current density of an optical front end comprising the dual pin PD and a tuned electronic preamplifier has been demonstrated.<>  相似文献   

18.
This paper presents a low power analog front-end for heart-rate detector at a supply voltage of 0.5 V in 0.18 μm CMOS technology. A fully differential preamplifier is designed with a low power consumption of 300 nW. A 150 nW fourth order Switched-opamp switched capacitor bandpass filter is designed with passband 8–32 Hz. To digitize the analog signal, a low power second-order ΣΔ ADC is designed. The dynamic range and SNR of the converter are 46 dB and 54 dB respectively and it consumes a power of 125 nW. The overall front-end system including preamplifier, SO-SC bandpass filter, ΣΔ modulator and the biasing circuits are integrated and the total system consumes a power of 0.975 μW from 0.5 V supply.  相似文献   

19.
应用于毫米波无线接收系统的高集成化LTCC AIP设计   总被引:1,自引:0,他引:1  
介绍了一种基于低温共烧陶瓷工艺的新型高度集成毫米波无源接收前端,该前端由阵列天线、馈电网络和带通滤波器构成.上述无源器件以天线集成封装方式经过一体化设计,并应用于毫米波无线系统.首先,设计了2×2线极化空气腔阵列天线,通过采用新颖的内埋空气腔体结构,使天线最大增益提高了2.9 dB.其次,将具有双层谐振结构的三阶小型化发卡型带通滤波器和天线馈电网络进行一体化设计.该滤波器测试结果显示:插入损耗为1.9dB,3 dB相对带宽为8.1%(中心频率为34 GHz).最后将上述天线和滤波网络进行一体化设计,实现了三维无线接收前端.在集成结构中,通过采用金属柱栅栏抑制了寄生模式.测试结果显示天线最大增益可达14.3dB,通过集成滤波馈电网络,其阻抗带宽为2.8 GHz.该新型一体化集成前端系统具有良好的射频性能,可作为全集成无源前端应用于Ka波段无线系统中.  相似文献   

20.
An optimum receiver structure for optical PPM systemics is considered and from this a simple sub-optimum receiver is proposed which offers significant SNR improvement relative to existing design approaches and yet requires few circuit changes. Receivers incorporating either p-i-n or avalanche photodiodes and FET or BJT preamplifiers are analyzed. The optimization technique relies on matching the frequency response of the receiver to that of the incident optical pulse and setting the avalanche gain and threshold detector at optimum levels. For a FET preamplifier the SNR improvement is 10.8 dB with a p-i-n photodiode and 4.7 dB with an avalanche photodiode. For a BJT preamplifier the SNR improvement is 3.1 dB and 2.3 dB with the p-i-n and avalanche diodes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号