首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams. The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements. The overall smart composite beam is composed of a laminated substrate conventional composite beam, and a piezoelectric layer attached at the top surface of the substrate beam. The piezoelectric layer acts as the actuator layer of the smart beam. Alternate finite element models of the beams, based on an “equivalent single layer high order shear deformation theory”, and a “layer-wise high order shear deformation theory”, are also derived for the purpose of investigating the required number of elements across the thickness of the overall smart composite beams. Several cross-ply substrate beams are considered for presenting the results. The responses computed by the present new “smart finite element model” excellently match with those obtained by the exact solutions. The new smart finite elements developed here reveal that the development of finite element models of smart composite beams does not require the use of conventional first order or high order or layer-wise shear deformation theories of beams. Instead, the use of the presently developed locking-free 4-node elements based on conventional linear piezo-elasticity is sufficient.  相似文献   

2.
The paper presents the finite rotations beam equations derived on use of the generalized Reissner hypothesis with a scalar parameter for the transverse extension. The beam strain and change of curvature measures are obtained from the right stretch strain, and the virtual work is given for Biot‐type stress and couple resultants. The strain energy for the first‐order isotropic elastic material is assumed in terms of the right stretch strain, and constitutive equations for the beam stress and couple resultants are derived. Two finite rotation elements are developed from the derived beam equations: a beam element with the transverse stretch and a quadrilateral element. First, the beam element with the uniformly under‐integrated tangent operator is developed. Next, the formula linking the middle‐line variables and the interface variables of the beam is introduced consistently with the generalized Reissner kinematics. Linearization of this formula is performed, and the derived tangent operator is used to convert the two‐node beam element to a four‐node quadrilateral. Both the finite elements have been tested on several numerical examples, some of highly non‐linear characteristics, and their accuracy is very good. It has been established that the quadrilateral element, which is intended for applications to multi‐layer beams, performs very well for high elemental aspect ratios, and can therefore be applied to modelling of very thin layers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
4.
In this paper a smoothing procedure is suggested for the 3D beam-to-beam contact. A smooth segment is defined basing on current position vectors of three nodes limiting two adjacent finite elements. The approximated fragment of a beam axis as a 3D curve spans between the centre points of these elements. The curve is described parametrically using three Hermite polynomials. The four boundary conditions necessary to determine the coefficients for each of these polynomials involve co-ordinates and slopes at the curve ends. The slopes are defined in terms of the element nodal co-ordinates, too. There is no dependence on nodal rotations so this formulation can be embedded in a beam analysis using any type of beam finite element. This geometric representation of the curve is incorporated into the 3D beam-to-beam frictional contact model with the penalty method used to enforce contact constraints. The residual vector and the corresponding tangent stiffness matrix are determined for the normal part of contact and for the stick or slip state of friction. A few numerical examples are presented to show the performance of the suggested smoothing procedure in the cases featuring large frictional sliding.  相似文献   

5.
The accuracy and convergence properties of two new Timoshenko beam finite elements are compared to those now widely used. Both of the new elements are consistently derived from a variational principle written in terms of the transverse beam deflection and normal rotation. The deflection is expanded as a cubic and the rotation as a quadratic in the axial co-ordinate of the beam, giving rise to a seven degrees of freedom element. The first element, called TIM7, includes all the degrees of freedom while the second, called TIM4, reduces this number to four through a constraint introduced by Egle. Both elements display monotonic covergence for beam natural frequencies as a function of the number of degrees of freedom and both will give the analyst some measure of confidence in response calculations for beams excited at high frequencies.  相似文献   

6.
This paper presents a new approach, called the moving element method, for the dynamic analysis of train‐track systems. By discretizing the rail beam on viscoelastic foundation into elements that ‘flow’ with the moving vehicle, the proposed method eliminates the need for keeping track of the vehicle position with respect to the track model. The governing equations are formulated in a co‐ordinate system travelling at a constant velocity, and a class of conceptual elements (as opposed to physical elements) are derived for the rail beams. In the numerical study, four cases of moving vehicle are presented taking into consideration the effects of moving load and rail corrugation. The method is shown to work for varying vehicle velocity and multiple contact points, and has several advantages over the finite element method. The numerical solutions compare favourably with the results obtained by alternative methods. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Simple and economical procedures for large-deformation elasto-plastic analysis of frames, whose members can be characterized as beams, are presented. An assumed stress approach is employed to derive the tangent stiffness of the beam, subjected in general to non-conservative type distributed loading. The beam is assumed to undergo arbitrarily large rigid rotations but small axial stretch and relative (non-rigid) point-wise rotations. It is shown that if a plastic-hinge method (with allowance being made for the formation of the hinge at an arbitrary location or locations along the beam) is employed, the tangent stiffness matrix may be derived in an explicit fashion, without numerical integration. Several examples are given to illustrate the relative economy and efficiency of the method in solving large-deformation elasto-plastic problems. The method is of considerable utility in analysing off-shore structures and large structures that are likely to be deployed in outerspace.  相似文献   

8.
A new method called the crack-tip force method (CTFM) is derived for computing the energy release rate in delaminated beams and plates. In this method the delaminated plate is divided into two laminates on either side of the plane of delamination. The interaction forces, called crack-tip forces, between the sub-laminates at the crack-tip are computed. The energy release rate is expressed as a quadratic function of the crack-tip forces and the plate compliance coefficients. The CTFM is compared to the virtual crack closure technique (VCCT) as well as to a previously derived method called the strain energy density method using double cantilevered beam specimens as examples. The CTFM is found to be very efficient as the crack-tip forces are part of the solution of finite element analysis of delaminated plates, and they can be readily used to compute the point-wise energy release rate along the delamination front.  相似文献   

9.
Plane deformation of anisotropic beams with narrow rectangular cross sections exhibits coupling of stretching, bending and transverse shearing. For anisotropic cantilever beams with a stiff end-cap under end forces and an end couple, assessments were made for approximate solutions by comparing these with numerically exact finite element (FE) solutions. Specific attention is given to point-wise or approximate satisfaction of the end-fixity conditions. As approximate methodologies, (i) the elementary polynomial form of Airy's stress function for the plane stress problem in a rectangular region, (ii) a Timoshenko-type beam theory, and (iii) the Bernoulli-Euler beam theory were selected. Among these, only the polynomial form of Airy's stress function violates the point-wise end-fixity conditions. Both the polynomial Airy stress function and the Timoshenko-type beam theory successfully model the effects of transverse shear deformation and the coupling of stretching and transverse deflection. Analytical solutions demonstrate that the normal shear coupling effect increases linearly with the thickness-to-span ratios in axial normal stress and axial displacement, while the coupling manifests quadratically in transverse displacement. The comparison of end displacements with the numerically exact FE solutions indicates that the polynomial form of Airy's stress function is no better than the Timoshenko-type beam theory. Similar conclusions were reached for the problem of uniformly loaded cantilever beams. It has been found that the accurate prediction of the deformation of thick anisotropic beams with significant normal-shear coupling requires the use of higher order theories.  相似文献   

10.
11.
三维曲井内钻柱的接触非线性有限元分析   总被引:1,自引:0,他引:1  
谈梅兰  王鑫伟  吴光 《工程力学》2006,23(6):162-166
针对三维曲井内钻柱的接触非线性有限元分析,提出了一种符合接触性质的新的接触模型:在接触点处,钻柱的横向位移应限制在给定的环空间隙值内,同时,还必须让横截面绕变形曲线副法线轴的转角为零。利用新的接触模型,采用忽略横向剪切变形的三维空间曲梁单元对三维曲井内钻柱的接触非线性进行了有限元分析,给出了一套计算方法。算例结果表明:新的接触模型与计算方法,对于有解析解的平面问题其精度高,避免了随着单元划分的不同导致解时大时小而不稳定的现象。工程算例——三维曲井内钻柱的接触非线性分析结果偏于安全。  相似文献   

12.
An improved formulation for spatial stability and free vibration analysis of thin-walled elastic beams is presented by applying Hellinger–Reissner principle and introducing Vlasov's assumption. It includes shear deformation effects due to flexural shear and restrained warping stress, rotary inertia effects and bendirsg–torsional coupling effects due to unsymmetric cross sections. Closed-form solutions for determining flexural–torsional buckling loads and natural frequencies of unsymmetric simply supported beam-columns subjected to eccentric axial force are newiy derived and also, the tangent stiffness matrix and stability functions for symmetric thin-walled beam elements subjected to axial force are presented. In a companion paper,26 these analytic solutions are compared with the finite element solutions according to the increase of shear deformation effects.  相似文献   

13.
大转动平面梁有限元分析的共旋坐标法   总被引:2,自引:0,他引:2  
蔡松柏  沈蒲生 《工程力学》2006,23(Z1):69-72
虽然大转动平面梁单元已有很多,但其中许多太复杂,缺乏计算效率,值得改进。采用共旋坐标法准确的首次导出了平面梁单元发生大转动小应变时的非对称单元切线刚度矩阵,利用这一非对称的单元切线刚度矩阵由Newton-Raphson迭代法编制了一个FORTRAN程序NPFSAP,并获得了大转动梁、方形和圆形框架的高精度数值解,表明了这种非线性单元列式的正确性和非线性求解过程的收敛性,非对称单元切线刚度矩阵值得推介。  相似文献   

14.
In a companion paper,1 equations of motion and closed-form solutions for spatial stability and free vibration analysis of shear flexible thin-walled elastic beams were analytically derived from the linearized Hellinger–Reissner principle. In this paper, elastic and geometric stiffness matrices and consistent mass matrix for finite element analysis are evaluated by using isoparametric and Hermitian interpolation polynomials. Isoparametric interpolation functions with 2, 3 and 4 nodes per element are utilized in isoparametric beam elements, and in Hermitian beam elements, the third- and fifth-order Hermitian polynomials including shear deformation effects are newly derived and applied for the calculation of element matrices. In order to verify the validity of the finite element formulation, both analytic and numerical solutions for spatial buckling and free vibration problems including shear effects are presented and compared.  相似文献   

15.
This paper presents a new spatially curved‐beam element with warping and Wagner effects that can be used for the non‐linear large displacement analysis of members that are curved in space. The non‐linear behaviour of members curved in space shows that the Wagner effects are substantial in the large twist rotation analysis. Most existing finite beam element models, such as ABAQUS and ANSYS cannot predict the non‐linear large displacement response of members curved in space correctly because the Wagner effects, viz. the Wagner moment and the corresponding finite strain terms, have not been considered in these finite beam elements. As a consequence, these finite beam elements do not provide correct predictions for the out‐of‐plane buckling and postbuckling behaviour of arches as well. In this paper, the symmetric tangent stiffness matrix has been derived based on the finite rotations parameterized by the conventional displacements. The warping and Wagner effects: both the Wagner moment and the corresponding finite strain terms and their constitutive relationship, are included in the spatially curved‐beam element. Two components of the initial curvature, the initial twist and their interactions with the displacements are also considered in the spatially curved‐beam element. This ensures that the large twist rotation analysis for the members curved in space is accurate. Comparisons with existing experimental, analytical and numerical results show that the spatially curved‐beam element is accurate and efficient for the non‐linear elastic analysis of curved members, buckling and postbuckling analysis of arches, and in its ability to predict large deflections and twist rotations in more arbitrarily curved members. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
A family of sinus models is presented for the analysis of laminated beams in the framework of free vibration. A three-noded finite element is developed with a sinus distribution with layer refinement. The transverse shear strain is obtained by using a cosine function avoiding the use of shear correction factors. This kinematic accounts for the interlaminar continuity conditions on the interfaces between the layers, and the boundary conditions on the upper and lower surfaces of the beam. A conforming FE approach is carried out using Lagrange and Hermite interpolations. It is important to notice that the number of unknowns is independent of the number of layers. Vibration mechanical tests for thin and thick laminated and sandwich beams are presented in order to evaluate the capability of these new finite elements to give accurate results with respect to elasticity or finite element reference solutions. Both convergence velocity and accuracy are discussed and these new finite elements yield very accurate results at a low computational cost for various boundary conditions. In particular, the two models including the transverse normal effect have the capability to take into account the thickness mode shape.  相似文献   

17.
 This paper is about planar frictional contact problems of both flexible and rigid bodies. For the flexible case a nonlinear finite element formulation is presented, which is based on a modified Coulomb friction law. Stick-slip motion is incorporated into the formulation through a radial return mapping scheme. Linearly interpolating four node elements and three node contact elements are utilized for the finite element discretization. The corresponding tangent stiffness matrices and residual vectors of the equations of motion are presented. In the rigid body case the contact problem is divided into impact and continual contact, which are mathematically described by linear complementarity problems. The impact in normal direction is modeled by a modified Poisson hypothesis, which is adapted to allow multiple impacts. The formulation of the tangential impact is grounded on Coulombs law of friction. The normal contact forces of the continual contact are such that colliding bodies are prevented from penetration and the corresponding tangential forces are expressed by Coulombs law of friction. Examples and comparisions between the different methods are presented. Received: 10 January 2001  相似文献   

18.
The tangent operator and design sensitivity expressions for non-linear elastica subject to frictionless unilateral contact are derived and computed via the finite element method. The sensitivity computations are then combined with a numerical programming package to create an optimal design environment. To exemplify the optimal design environment, a beam's contact surface is contoured to minimize bending stress. This work combines the research on the sensitivity analysis of non-linear elastic bodies subject to constraints, finite strain non-linear elastic beam analysis and contact analyses. The analysis is valid for any smooth contact surface; and specialized for the case in which the surface is represented by a cubic spline. The direct differentiation method is utilized to perform the sensitivity analysis. In an example problem, the sensitivity analysis is verified by finite difference computations and then combined with a numerical optimization program to design the stop profile of a valve.  相似文献   

19.
J N Reddy 《Sadhana》1999,24(3):175-198
First, various finite element models of the Timoshenko beam theory for static analysis are reviewed, and a novel derivation of the 4 × 4 stiffness matrix (for the pure bending case) of the superconvergent finite element model for static problems is presented using two alternative approaches: (1) assumed-strain finite element model of the conventional Timoshenko beam theory, and (2) assumed-displacement finite element model of a modified Timoshenko beam theory. Next, dynamic versions of various finite element models are discussed. Numerical results for natural frequencies of simply supported beams are presented to evaluate various Timoshenko beam finite elements. It is found that the reduced integration element predicts the natural frequencies accurately, provided a sufficient number of elements is used. The research reported herein is supported by theOscar S. Wyatt Endowed Chair.  相似文献   

20.
Finite element model is presented for the analysis of hybrid piezoelectric beams under static electromechanical load, using the one-dimensional (1D) coupled zig-zag theory developed recently by the authors. Two noded elements are used with cubic Hermite interpolation for deflection and electric potentials at the sub-layers and with linear interpolation for axial displacement and shear rotation. The expressions for the variationally consistent stiffness matrix and load vector are derived and evaluated in closed form using exact integration. The formulation is validated by comparison with the analytical solution for simply-supported beam. The finite element model is free of shear locking. The present zig-zag finite element results for cantilever beams are compared with the 2D finite element results using ABAQUS to establish the accuracy of the zig-zag theory for these boundary conditions.S. Kapuria is grateful to Department of Science and Technology, Government of India, for providing financial assistance for this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号