首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gel-glasses of various compositions in the x ZrO2.(10 – x )SiO2system were fabricated by the sol–gel process. Precipitation due to the different reactivities between tetraethyl orthosilicate (TEOS) and zirconium(IV) n -propoxide has been eliminated through the use of 2-methoxyethanol as a chelating agent. Thermal treatment of these gels produced crystalline ZrO2particles. While monoclinic is the stable crystalline phase of zirconia at low temperatures, the metastable tetragonal phase is usually the first crystalline phase formed on heat treatment. However, stability of the tetragonal phase is low, and it transforms to the monoclinic phase on further heat treatment. In this study, it has been found that the transformation temperature increases as the SiO2content in the ZrO2–SiO2 binary oxide increases. The most significant results were from samples containing only 2 mol% SiO2, where the metastable tetragonal phase formed at low temperatures and remained stable over a broad temperature range. X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to elucidate the structure of these binary oxides as a function of temperature.  相似文献   

2.
The effect of YO1.5 dopant on unit-cell parameters of ZrO2 (YO1.5=0 to 14.6 mol%) were examined by the X-ray whole-powder-pattern decom-position technique. The unit cell of monoclinic ZrO2 has the largest expansion along the direction perpen-dicular to (100). The rate of increase of the unit-cell volume of monoclinic ZrO2 with YO1.5 content is greater than that of tetragonal ZrO2 and comparable to that of cubic ZrO2.  相似文献   

3.
Crack resistance characteristics and fatigue properties have been investigated in Ce-TZP ceramics with different grain sizes. The relatively low critical transformation stress allows the development of larger transformation zones (≦200 μm), leading to flaw-tolerant behavior. However, autocatalytic transformation processes are found to be bound to grain sizes beyond a critical value; transformation is then very limited in finer microstructures. Fatigue as a specific cyclic effect is more pronounced in microstructures with larger grains. Thus, damaging processes in the course of extensive t–m transformation are suspected to be intensified during cyclic loading.  相似文献   

4.
The addition of Ta2O5, Nb2O5, and HfO2 enhanced the transformability of Y2O3-stabilized tetragonal ZrO2 polycrystal (Y-TZP), which was indicated by an increase in phase transformation temperatures and fracture toughness of Y-TZP. Comparison of the alloying effects of these oxides on the transformability and crystal structure of Y-TZP suggested that an alloying oxide which increases the c/a axial ratio (tetragonality) of TZP also increases the transformability. Empirical equations to predict the tetragonality are proposed. Calculated tetragonalities showed good agreement with measured values in the systems ZrO2-Y2O3-Ta2O5, -Nb2O5, and -HfO2.  相似文献   

5.
The microstructure of ZrO2 fine particles produced by a novel synthesis method at 450° and 950°C has been studied. The fundamentals of the synthesis method, which involves both chemical and diffusion phenomena, are presented. The method is based on mass transport through the gaseous phase between metallic zirconium and Fe2O3 powder. The mass-transporting chemical species are zirconium and iron chlorides. This article focuses on the microstructure and structure of ZrO2 particles formed by the reaction between gaseous ZrCl4 and solid Fe2O3, which is a relevant reaction step that occurs during the synthesis process. The resulting ZrO2 crystals grown on Fe2O3 particles have been analyzed using transmission electron microscopy. Microstructural characterization has been complemented by X-ray diffractometry analysis. Tetragonal-ZrO2 is produced at 450°C and monoclinic-ZrO2 single crystals are produced at 950°C.  相似文献   

6.
Pure BaTiO3 exhibits a paraelectric-to-ferroelectric phase transition at 130°C. When stoichiometric BaTiO3 is combined with 10 mol% ZrO2, the relative permittivity (ε) changes to a broad, relatively insignificant temperature dependence, and the Curie point, T c , is not sharply defined. However, the transition sharpens at T = 95°C when these samples are sintered for a longer period of 60 h. SEM, EDAX analysis coupled with TEM observation gives three types of core-shell structures of different microstructural characteristics which are related to the diffuse phase transition. Chemical inhomogeneity, due to Zr4+ distribution in the core-shell structure, is proposed to account for the diffuse phase transition behavior.  相似文献   

7.
Metastable tetragonal ZrO2 phase has been observed in ZrO2–SiO2 binary oxides prepared by the sol–gel method. There are many studies concerning the causes of ZrO2 tetragonal stabilization in binary oxides such as Y3O2–ZrO2, MgO–ZrO2, or CaO–ZrO2. In these binary oxides, oxygen vacancies cause changes or defects in the ZrO2 lattice parameters, which are responsible for tetragonal stabilization. Since oxygen vacancies are not expected in ZrO2–SiO2 binary oxides, tetragonal stabilization should just be due to the difficulty of zirconia particles growing in the silica matrix. Furthermore, changes in the tetragonal ZrO2 crystalline lattice parameters of these binary oxides have recently been reported in a previous paper. The changes of the zirconia crystalline lattice parameters must result from the chemical interactions at the silica–zirconia interface (e.g., formation of Si–O–Zr bonds or Si–O groups). In this paper, FT-IR and 29Si NMR spectroscopy have been used to elucidate whether the presence of Si–O–Zr or Si–O is responsible for tetragonal phase stabilization. Moreover, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy have also been used to study the crystalline characteristics of the samples.  相似文献   

8.
Aqueous mixtures of either zirconium acetate or zirconium nitrate and magnesium nitrate were dried and subsequently pyrolyzed at fast heating rates (upquenching) to form metastable crystalline phases of ZrO2 with various degrees of MgO supersaturation. The crystallization temperature was determined to be 380°C for the zirconium acetate, and 270°C for the zirconium nitrate at a heating rate of 5°C/min. The crystalline structures were characterized as a function of MgO content and thermal history for specimens containing 0 to 30 mol% MgO. Upquenching to 900°C, where monoclinic ( m ) ZrO2 and MgO are the equilibrium phases, yielded single-phase tetragonal ( t ) ZrO2 (<8 mol% MgO), single-phase cubic ( c ) ZrO2 (9 to 17 mol% MgO), and two-phase c -ZrO2+ MgO structures (>17 mol% MgO). The composition for which T 0( t/c ) = 900°C was estimated as 9 ± 1 mol% MgO. Compositions crystallizing as metastable t -ZrO2 (<8 mol% MgO) partitioned at higher temperatures and/or longer times into two-phase mixtures, following the general sequence t → t + m → m + MgO. Similarly, compositions forming metastable c -ZrO2 (10 to 30 mol% MgO) partitioned in the following sequence: c → c + t + MgO → t + MgO → t + m + Mgo → m + Mgo. The initial phase selection and subsequent partitioning sequence are discussed in light of phase hierarchies predicted from thermodynamic concepts and kinetic constraints which are introduced by the solute partitioning required to achieve equilibrium.  相似文献   

9.
The primary and secondary particle sizes of monoclinic hydrous-ZrO2 particles produced by the hydrolysis of various ZrOCl2 solutions, with and without the addition of NaCl, CaCl2, or AlCl3, were measured using X-ray diffraction and transmission electron microscopy in order to clarify the formation mechanisms of primary and secondary particles. The primary particle size of hydrous ZrO2, under a constant ZrOCl2 concentration, decreased monotonously with increasing Cl-ion concentration. On the contrary, the secondary particle size increased monotonously with increasing Cl-ion concentration. The present experimental results revealed that the primary and secondary particle sizes of hydrous ZrO2 are controlled primarily by the concentrations of H+ and Cl ions produced during hydrolysis, and are independent of the type of added metal ions. The formation mechanisms of the primary and secondary particles of hydrous ZrO2 were determined on the basis of the present experimental results.  相似文献   

10.
An optimal set of thermodynamic functions for the ZrO2─YO1.5 system are obtained using phase diagram and thermodynamic data. The liquid is described by a subregular solution model. Both cubic ZrO2 and YO1.5 solid solutions are regarded as one cubic solution, which is also treated as a subregular solution. The ordered Zr3Y4O12 phase is treated as a stoichiometric compound. A regular solution model is applied to the other solid solutions. Tentative equilibrium boundaries between monoclinic and tetragonal ZrO2 solid solutions are evaluated from information about the T 0 line. The calculated phase diagram and thermodynamic functions agree well with experimental data.  相似文献   

11.
Seeding a mixture of boehmite (AIOOH) and colloidal ZrO2 with α-alumina particles and sintering at 1400°C for 100 min results in 98% density. The low sintering temperature, relative to conventional powder processing, is a result of the small alumina particle size (∼0.3 μm) obtained during the θ-to α-alumina transformation, homogeneous mixing, and the uniform structure of the sol-gel system. Complete retention of pure ZrO2 in the tetragonal phase was obtained to 14 vol% ZTA because of the low-temperature sintering. The critical grain size for tetragonal ZrO2 was determined to be ∼0.4 μm for the 14 vol% ZrO2—Al2O3 composite. From these results it is proposed that seeded boehmite gels offer significant advantages for process control and alumina matrix composite fabrication.  相似文献   

12.
Stable and metastable phase relationships in the system ZrO2–ErO1.5 were investigated using homogeneous samples prepared by rapid quenching of melts and by arc melting. The rapidly quenched samples were annealed in air for 48 h at 1690°C or for 8 months at 1315°C. Two tetragonal phases ( t - and t '-phases) were observed after quenching samples heated at 1690°C to a room temperature, whereas one t -phase and cubic ( c -) phase were found in those treated at 1315°C. Since the t '-phase is obtained through a diffusionless transformation during cooling from a high-temperature c -phase, t - and c -phases can coexist at high temperature. The t - and c -phases field spans from 4 to 10 mol% ErO1.5 at 1690°C and from 3 to 15 mol% ErO1.5 at 1315°C. The equilibrium temperature T t-m 0 between the t - and monoclinic ( m -) phases estimated from As and Ms temperatures decreased with increasing ErO1.5 contents.  相似文献   

13.
Ultrafine-grained monoclinic ZrO2 polycrystals (MZP) and 3-mol%-Y2O3-stabilized tetragonal ZrO2 polycrystals (3Y-TZP) were obtained by hot isostatic pressing (HIP). Both MZP and TZP were "high-purity" materials with impurities less than 0.1 wt%. The deformation behavior was studied at 1373 K, which was lower than the monoclinic ↔ tetragonal transition temperature. The stress exponent of 3Y-TZP with grain size of 63 nm was 3 in the higher stress region, and increased from 3 to 4 with decreasing stress. The deformation of MZP was characterized by a stress exponent of 2.5 over a wide stress range. The strain rate of 3Y-TZP was slower than that of MZP by 1 order of magnitude. It was suggested that either the doped yttrium or the difference in the crystal structure affected the diffusion coefficients of ZrO2.  相似文献   

14.
ZrO2 powder was prepared by a sol–emulsion–gel method at temperatures below 140°C from ZrO(NO3)2· n H2O. The asprepared powder was amorphous, but crystallized into the tetragonal structure by 600°C. The metastable tetragonal powder (600°C) was comprised of ultrafine 4- to 6-nm size particles. On heat treatment, the tetragonal form completely transformed into the monoclinic state at 1100°C. Preliminary studies indicate good sinterability with densities greater than 94% at 1100°C and with a grain size of 0.25 μ.  相似文献   

15.
Mechanical loading of polycrystalline ZrO2 ceramics causes reversible, out-of-plane distortions at free surfaces that are parallel to the direction of applied stress. These distortions have been measured using optical interference microscopy, and the separate contributions due to elastic anisotropy and reversible mantensitic tranformation have been identified.  相似文献   

16.
Monodispersed ZrO2 seed particles which were prepared by hydrolysis of zirconium alkoxide solutions were allowed to grow by further addition of zirconium alkoxide and water under conditions in which new particles do not nucleate and grow. The particle growth mechanism is presumed to be a surface reaction in which the rate-determining step is a first-order polynuclearlayer growth mechanism. With this method of powder preparation, it is possible to precisely control the particle size, and it may be useful for applications in ceramic processing.  相似文献   

17.
Studies made on low-hafnium-content ZrO2, show that the monoclinic-tetragonal inversion temperature is 1170°C., and it is raised to approximately 1190°C. in the "natural" ZrO2, which contains approximately 2% HfO2. No explanation could be found for the knownmarked hysteresis during cooling, when the reverse polymorphic transformation takes dace at 1040°C. In the system ZrO2-ThO2 the monoclinic-tetragonal ZrO2, inversion temperature is lowered to 1000°C., although the maximum solid solution extent of ZrO2, in Thon and vice versa is approximately only 2% at this temperature. Below about 400°C. under hydrothermal conditions it was possible to prepare a continuous, although metastable series of solid solutions with the fluorite structurewith compositions varying from ThO2, to nearly pure ZrO2. Contrary to earlier work only 8 mole ZrO2, dissolves in UO2 and less than 4 mole of UO, in ZrO2 at temperatures up to 13OO0C. A continuous series of solid solutions could be made between Th2 and UO2 at 13OO°C., and extensive defect fluorite solid solutions could be prepared between Tho2 and U3O8; there is some evidence for exsolution into uranium-rich and thorium-rich members at low temperatures.  相似文献   

18.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

19.
BaTi4O9 and Ba2Ti9O20 precursors were prepared via a sol–gel method, using ethylenediaminetetraacetic acid as a chelating agent. The sol–gel precursors were heated at 700°–1200°C in air, and X-ray diffractometry (XRD) was used to determine the phase transformations as a function of temperature. Single-phase BaTi4O9 could not be obtained, even after heating the precursors at 1200°C for 2 h, whereas single-phase Ba2Ti9O20 (as determined via XRD) was obtained at 1200°C for 2 h. Details of the synthesis and characterization of the resultant products have been given.  相似文献   

20.
Methods of suppressing decreased conductivity in 8 mol% Y2O3-stabilized–92 mol% ZrO2 (8YSZ) with aging were investigated. Different amounts of Sc2O3 were doped into 8YSZ. The electrochemical properties of Sc2O3-doped 8YSZ were measured, and the microstructural and local structural changes were characterized. The present results indicate that an appropriate amount of Sc2O3 doping, 3 or 4 mol%, effectively suppresses decreased conductivity with aging in 8YSZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号