首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
溶解氧对膜生物反应器硝化反硝化的影响   总被引:2,自引:0,他引:2  
实验采用一体式膜生物反应器处理生活污水,考察了溶解氧对膜生物反应器同步硝化反硝化作用的影响,同时对膜生物反应器中同步硝化反硝化机理进行了详细的分析。结果表明,反应器对NH3-N、TN的去除率受DO的影响较大,当HRT为6h,进水pH值为7.0~8.5,反应器温度为7-13℃,DO为1.5mg/L左右时,系统对NH3-N、TN的去除率分别在97%和92%以上,达到了同步硝化反硝化的运行条件。  相似文献   

2.
OGO工艺是一种在OCO基础上改进形成的新型环流循环污水处理技术,具有良好、稳定的生物脱氮效果。OGO系统在处理中浓度生活污水时,出水TN、NH3-N浓度分别为7.03~12,88mg/L和4.32~9.01mg/L,系统对TN和NH3-N的平均去除率分别达到74.04%和81.14%,环区内TN的去除约占整个系统生物脱氮的57%。环区各检测点硝态氮浓度均小于3mg/L,且无明显差异,同步硝化反硝化作用为OGO系统生物脱氮的主要途径之一,而主反应器内显著的DO浓度梯度,部分活性污泥絮体的团块化,以及系统中存在部分具有反硝化能力的好氧菌属,是系统发生同时硝化反硝化实现生物脱氮的重要原因。  相似文献   

3.
研究了半软性填料膜生物反应器内的同步硝化反硝化现象及机理,考察了DO,C/N对有机物和氨的去除效果以及对同步硝化反硝化的影响。试验结果表明,反应器内存在较好的同步硝化反硝化效果。进水COD为800mg/L左右,pH为7.0-8.0,HRT为10h,温度为25℃时,DO为2.5mg/L左右,C/N为20左右的条件下同步硝化反硝化效果最好,且COD,NH4^+-N,TN去除率都可以达到90%以上。  相似文献   

4.
以低COD/N人工模拟废水为基质,研究移动床生物膜反应器(MBBR)内同步硝化反硝化(SND)过程。进水COD和NH4+-N的质量浓度分别为200 mg/L和40 mg/L,以K1型填料为载体(填充率为40%),DO控制在3~4mg/L,20 d后有稳定的生物膜形成。生物膜完全成熟后,每个填料上平均生物膜量为33.5 mg,出水COD和NH4+-N去除率平均分别达86.68%和97.25%,NO2--N基本无累积,NO3--N的质量浓度均保持在5 mg/L以下,TN去除率在后期最高达90.6%,计算得到SND率达91.66%,结果证实在单一反应器内实现了良好的同步硝化反硝化过程。动力学模拟得出同步硝化反硝化过程中的NO3--N饱和常数为5.83 mg/L,大于单级反硝化过程中的硝酸盐氮饱和常数。  相似文献   

5.
不同有机碳源对SBR工艺同步硝化反硝化影响   总被引:3,自引:0,他引:3  
采用序批式生物反应器(SBR)处理模拟废水,在pH值7.0~8.0、温度30~32℃、DO浓度0.5~1mg/L、MLSS(4000±300)mg/L、NH4+-N35~45mg/L条件下,考察乙酸钠、淀粉和葡萄糖作为碳源对SBR工艺同步硝化反硝化效果的影响。结果表明:投加葡萄糖时,COD去除率达到93.95%,出水硝酸盐浓度为7mg/L;投加淀粉时,COD去除率仅70%,出水硝酸盐浓度为12mg/L;采用乙酸钠作为碳源时,COD去除率为88.34%,出水硝酸盐浓度为4mg/L。COD/NH4+-N为12,分次投加乙酸钠时,氨氮去除率高于95%,总氮去除率高于90%,实现了同步硝化反硝化。在同步硝化反硝化SBR系统中,乙酸钠比淀粉和葡萄糖更适合作为碳源。  相似文献   

6.
设计结构合理的膜生物反应器,驯化培养硝化污泥,复配反硝化细菌,构建了具有同步硝化反硝化功能且能去除COD的膜生物反应器系统。MLVSS的增高和污泥结构的改善为同步硝化反硝化提供条件。进水氨氮浓度在50mg/L,MLVSS为8g/L时,最佳HRT为4~6h,气量控制在0.5m^3/h左右,TN去除率达80%以上。系统承受负荷变化范围0~0.36kgN/(ma·d),TN去除率均能保持80%左右,COD去除率稳定在90%。  相似文献   

7.
生物陶粒MBBR同步硝化反硝化脱氮试验研究   总被引:3,自引:1,他引:2  
利用生物陶粒作为移动床生物膜反应器(MBBR)的填料,通过试验考察了MBBR发生同步硝化反硝化(SND)的可能性。分析了溶解氧和碳氮质量比对SND的影响。试验结果表明:MBBR具有良好的有机物去除及同步硝化反硝化能力。溶解氧的质量浓度在3 mg/L左右时,不仅能够满足硝化作用的需要而且又不严重抑制反硝化作用,NH3-N去除率达到81.45%的同时TN去除率为60.35%;进水碳氮质量比在10左右时,NH3-N、TN去除率分别为81.65%、63.60%。  相似文献   

8.
应用前置反硝化BAF工艺对生活污水进行试验研究,结果表明水力负荷对该工艺处理效果影响显著。在A段与O段体积比1:2、气水比3:1、回流比200%的条件下。最佳水力负荷为2.80m^3/(m^2·h),此时COD去除率在90%左右,NH4^+-N去除率大于85%,总脱氮率大于70%:出水COD小于30mg/L,NH4^+-N小于5mg/L,TN小于15mg/L:同时发现回流比对系统TN去除效果影响较大。  相似文献   

9.
废水脱氮中好氧反硝化现象的研究   总被引:4,自引:0,他引:4  
采用SBR工艺,对废水脱氮中的好氧反硝化现象进行了研究。试验工序为:缺氧搅拌3h、曝气8h、缺氧搅拌1.5h、沉淀1h、排水。当进水ρ(NH4+-N)为107mg/L,ρ(CODCr)为700mg/L时,好氧段NH4+-N的去除率达到53.3%,TN的去除占整个周期TN去除的71.23%,表明好氧反硝化现象对整个周期的脱氮起着主要的作用。  相似文献   

10.
以疏水性无孔硅橡胶管为膜曝气组件,通过长期的运行试验,对硅胶膜曝气生物反应器中实现同步短程硝化反硝化的可行性进行了研究。结果显示:在温度为32℃,p H为7.5~8.0,溶解氧为0.5 mg/L,HRT为12 h,进水COD为300 mg/L,NH4+-N为60 mg/L时,SMABR具有最佳去除效果,此时出水NO2--N为7.3 mg/L,NO3--N未检测到,NH4+-N、TN、COD去除率分别为82.9%、71.0%、90.0%。研究结果表明:SMABR通过改变反应条件能稳定实现同步短程硝化反硝化。  相似文献   

11.
以厌氧氨氧化活性污泥作为接种物,以无机盐培养液作为实验用水,考察了溶解氧、进水NO2--N与NH4+-N的比值对厌氧氨氧化反应的影响。反应体系中硝酸盐的产生量随溶解氧浓度增加而增大,总氮去除率则随溶解氧浓度的增加而降低,除氧实验时出水NO3--N浓度平均为67.2mg/L,总氮去除率平均为73.9%;不除氧时出水NO3--N浓度平均为83.0mg/L,总氮去除率平均为67.8%;当进水NO2--N与NH4+-N比值为1.16时,利于厌氧氨氧化反应的进行,总氮去除率为62.78%。  相似文献   

12.
通过生物添加开发了生物膜强化MBR(BEMBR),研究用于处理生物制药废水(HRT为72 h)。对比试验结果表明,普通MBR(CMBR)进水COD和NH4+-N、TN的质量浓度平均分别为4 054 mg/L和429.1、446.1 mg/L,平均去除率分别为91.31%和97.69%、47.46%;BEMBR进水COD和NH4+-N、TN的质量浓度平均分别为3 615 mg/L和358.3、383.4 mg/L,平均去除率分别为90.47%和97.24%、63.30%;生物添加对COD、NH4+-N的去除特征无明显影响,但有利于TN的去除。运行-间歇时间为6-4 min条件下,BEMBR的平均膜污染周期为10.07 d,约为CMBR(0.83 d)的12倍;生物添加有利于降低SMP及EPS等引起膜污染的典型污染物质,并显著减缓膜污染进程。BEMBR运行-间歇时间分别在3-2、6-4、9-6 min条件下,平均膜污染周期分别为2.30、10.07、25.43 d;优化工艺条件为:生物添加体积比35%,运行-间歇时间9-6 min。  相似文献   

13.
采用外循环人工快渗系统(ECCRI)深度处理焦化废水。结果表明,水力负荷对COD和NH3-N去除率的影响较大,增大湿干时间比会提高NH3-N去除率,但对TN影响较小,出水循环能显著提高TN的去除率。在优化条件下,当水力负荷率为0.9 m3/(m2.d),湿干时间比为1/2及循环体积比为0.2时,ECCRI对COD和NH3-N、TN的平均去除率为77%,60.9%及54.9%,出水平均COD和NH3-N、TN分别为65 mg/L和12.8、24.4 mg/L。  相似文献   

14.
选用生物陶粒为滤料,考察了水力负荷、回流比、温度对上向流曝气生物滤池(UBAF)反硝化性能的影响.结果表明:UBAF的脱氮效果随着水力负荷的增大而降低,当水力负荷小于2.0 m3/(m2·h)时,对NH3-N、TN均能达到较好的去除效果,去除率分别为88.26%和72.22%;回流比对NH3-N去除效果的影响较小,对T...  相似文献   

15.
采用厌氧折流板(ABR)-生物接触氧化(BCO)工艺处理新兴农村生活污水,试验研究了COD去除率、pH、挥发性脂肪酸(VFA)、碱度等随水力停留时间(HRT)的变化情况以及BCO中氮的转化。试验停留时间经过20、16、12、8、4、3、2 h的连续改变,最终确定最佳停留时间是4 h。试验进水COD平均为1 530 mg.L-1,经过ABR处理之后,出水COD降为119 mg.L-1,经过BCO工艺处理后,COD降为9 mg.L-1。ABR工艺COD的平均去除率为92%,总COD去除率为98%。同时,进水NH4+-N经过ABR-BCO工艺处理以后,平均质量浓度由93 mg.L-1降为0.52 mg.L-1,NH4+-N去除率为99%,总氮去除率在40%左右。  相似文献   

16.
为解决现有SBR工艺的容积交换率低、运行稳定性不足等问题,提出了基于污泥转移的SBR工艺,介绍了基于污泥转移SBR工艺的基本概念和原理,研究了在推荐工况下的除污性能。结果表明,该工艺对COD的平均去除率>80%,出水COD稳定在45 mg.L-1左右。出水NH4+-N、TN随进质量水浓度的增加而增加,但平均去除率分别稳定在94%和64%。磷酸盐的平均去除率为96%,出水磷酸盐质量浓度稳定在0.3 mg.L-1以下。  相似文献   

17.
采用连续流A2/O工艺对模拟生活废水进行了长期连续实验,考察了低污泥浓度[MLSS=(1500±200) mg/L]下进水负荷与回流比对脱氮效率的影响。结果表明,通过调节进水流量改变进水负荷,当进水负荷从5.03 gCOD/(gMLSS·d)逐渐提高至10.05 gCOD/(gMLSS·d)时,COD去除率≥95%,氨氮去除率由69.59%升高为95%,总氮去除率由53.53%升高到80%;当进水负荷由10.05 gCOD/(gMLSS·d) 提高至20.31 gCOD/(gMLSS·d)时,氨氮去除率下降为50%,总氮去除率下降为40%。通过调节进水COD改变进水负荷,当进水负荷从10.05 gCOD/(gMLSS·d) 逐渐提高到124.11 gCOD/(gMLSS·d) 时,COD和氨氮的去除率均>90%,总氮去除率从70%逐渐增加到85%。在混合液回流比分别为300%、200%和100%的条件下,回流比对COD和氨氮去除效果影响较小,COD去除率≥90%,氨氮去除率≥95%;回流比对总氮去除效果影响较大,随回流比的增大总氮去除率减小。当内回流比为100%时,总氮去除率最高,达到79.76%。  相似文献   

18.
包胜  张光海  蔡建安 《安徽化工》2010,36(6):58-60,63
采用AAO泥水回流工艺处理焦化废水,研究了进水碳氮比(C/N)对COD、氨氮及TN去除率的影响。研究表明,进水碳氮比(C/N)在12—25范围内,厌氧滤池COD去除率和氨化率分别达到37%和30%;缺氧进水碳氮比(C/N)控制在5.3-11.9范围内,MO泥水回流系统去除COD与氨氮效果的影响不明显,平均去除率分别为89.6%和95.2%;缺氧进水碳氮比(C/N)控制在7.5~8.6范围内,系统具有较好的TN去除率,平均值为72.2%。出水COD和NH3-N均能够达到污水综合排放标准中的二级标准。  相似文献   

19.
对重庆市大渡口污水处理厂,在DO值分别为3.0、2.5、2.0、1.5、1.0mg/L的情况下,选取进水参数差别不是很大的10个周期进行生产性试验研究。结果表明:考察范围内,不同DO值条件下CASS工艺对COD均有良好的去除效果,无论采用何种DO值,均可保证出水CODCr浓度低于60mg/L,达标排放;不同DO值对NH4^+-N和TN的去除影响是巨大的,在DO=1.5mg/L和1.0mg/L时出水NH4^+-N和TN都曾出现过不达标的现象,并且考虑节能方面因素,宜将DO控制在2.5mg/L;各种DO值下,TP的去除率稳定且较高,始终保持在94.7%以上,出水也一直稳定在0.1~0.4mg/L。  相似文献   

20.
设计由水生植物、微生物、水生动物等生态要素的协同作用完成生态修复功能的生物栅处理装置。采用中试处理装置,9个廊道并联运行,连续进水和出水,处理量为6米3(/天·池)。试验主要考察了水力停留时间为30h、溶解氧(DO)维持在2~4mg/L、温度维持在20~28℃、pH值为7.0~7.5的最佳工况条件下对水体CODCr、NH3-N、总氮(TN)和总磷(TP)等的去除效果,并分析了不同填料生物膜中微生物的数量变化。试验结果显示生物膜中的微生物与CODCr、NH3-N、TN和TP的去除效果具有良好的相关性,最大去除率分别达到59.2%、62%、50%和74%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号