首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
基于三维分形理论,建立了同时考虑摩擦和微凸体相互作用影响的结合面法向接触刚度和接触阻尼分形模型。通过对所建模型仿真,分析了摩擦因数、分形维数、分形粗糙度参数和接触载荷对接触刚度和接触阻尼的影响。研究结果表明,该模型的接触刚度和接触阻尼随着法向载荷和分形维数的增大而增大,且会随着分形粗糙度参数的增大而变小;接触刚度随着摩擦因数的增大而减小,而接触阻尼则随着摩擦因数的增大而先增大后减小。另外将仅考虑微凸体相互作用和既无摩擦又无微凸体相互作用的情况进行了对比分析,进而得到当分形维数D=2.4时,微凸体相互作用会稍微增大接触刚度;当D≥2.5时,微凸体相互作用会减小接触刚度,且减小的程度越来越大;当2.4≤D≤2.9时,微凸体相互作用会减小接触阻尼。此外,将所建模型的仿真计算结果与实验数据进行对比分析,验证了所建模型的正确性。  相似文献   

2.
为准确计入结合面表面微观形貌对结合面的影响,提出结合面的“固-隙-固”接触模型。基于该接触模型和接触分形理论以及赫兹理论,建立考虑摩擦因素影响的结合面切向接触阻尼的分形预估模型,并通过数值仿真研究揭示有关参数对结合面切向接触阻尼的影响,为后续结合面动力学建模和动力学特性分析做准备。仿真分析结果表明:结合面的切向接触阻尼随结合面实际接触面积的增大而增大;随结合面法向载荷的增大而减小;随结合面间摩擦因数的增大而趋于恒定;实际接触面积影响cte*-μ曲线转折点(即临界摩擦因数μc)的位置,随着实际接触面积的增大,临界摩擦因数μc亦同时增大;不同的分形维数取值,尤其是分形维数取值在临界值(D=1.55)的两侧时,结合面间的接触行为存在较大差异。  相似文献   

3.
为准确且方便地计算两球面的切向接触刚度(TCS),在前期对两球面接触分形模型研究的基础上,通过引入考虑摩擦因素的弹塑性变形临界面积计算公式,并基于接触面切向刚度基本理论,建立了考虑摩擦因素的两球面切向接触刚度的分形模型。对模型进行了仿真分析,结果表明:切向接触刚度与法向载荷成正比关系;摩擦因数与切向接触刚度的关系因分形维数的变化而呈现出不同的规律;受到分形维数变化的影响,切向接触刚度随接触面材料特性参数和分形粗糙度幅值的增大而增大;在一定工况下,切向接触刚度在分形维数取1.5时达到最大,且当分形维数在1.5左右时,其值增大最快;球面内接触比外接触时的切向刚度大;随着曲率半径的增大,切向刚度增大。研究结果为后续开展高副结合面(如轴承等)润滑及动力学分析提供了理论基础。  相似文献   

4.
《机械传动》2017,(2):32-36
以M-B分形模型为基础,结合齿轮两圆柱体接触面积的分布公式,推导具有各向异性分形理论的齿轮结合面切向接触刚度计算模型。通过MATLAB仿真,获得模型中主要参数对分形接触模型影响的预测分析。结果表明,齿轮结合面的切向接触刚度与材料特性参数、齿轮齿数成正比,与无量纲粗糙度幅值、总切向载荷与总法向载荷之比成反比。当分形维数较小(D1.7)时,齿轮结合面的切向接触刚度与分形维数成正比;当分形维数较大(D≥1.7)时,齿轮结合面的切向接触刚度与分形维数成反比。  相似文献   

5.
针对现有结合面静摩擦因数分形模型的静摩擦因数随结合面法向接触载荷增大而增大,与试验研究结论及统计模型不一致的问题,基于尺度等级定义微凸体的大小,严格区分微凸体高度与变形,构建各尺度等级微凸体的法向接触载荷与接触面积之间关系及其发生弹性和弹塑性第一变形时所能承受的最大切向载荷即最大静摩擦力计算模型,进而建立结合面法向接触载荷与最大静摩擦力计算模型,在此基础上,依据结合面静摩擦因数定义,提出与微凸体尺度等级关联的考虑微凸体完全弹性、弹塑性和完全塑性三种变形机制的结合面静摩擦因数三维分形模型,数值仿真分析了结合面静摩擦因数与法向接触载荷和分形维数D等的关系,结果表明结合面静摩擦因数随着结合面法向接触载荷的增大而减小,随着分形维数的增大而增大,并试验实例验证了所建模型的正确性,解决了现有结合面静摩擦因数分形模型与统计模型和试验结果之间的不一致性.  相似文献   

6.
为了准确计算微线段齿轮啮合时的法向接触刚度,引入摩擦因素的影响,通过修正考虑摩擦的弹塑性变形临界面积公式、接触面积公式和刚度公式,结合圆柱结合面接触点面积分布公式,基于已有的结合面法向接触刚度的分形模型,推导出适用于微线段齿轮轮齿法向接触刚度分形模型。通过该模型建立法向接触刚度与法向载荷之间的关系,以及分析模型中的参数对法向接触刚度的影响发现:在无摩擦条件下,相同载荷下的接触刚度最大,且接触刚度随着摩擦因数的增大而减小,在摩擦因数较小时,摩擦因数的改变对圆柱体法向接触刚度的影响也较小;表面微观因素对法向接触刚度的影响需综合考虑分形维数和分形粗糙度幅值的相互影响,二者有着较为复杂的关系;内接触形式、增大材料特性参数和圆柱体半径均可使法向接触刚度增大。最后,选取一组不同加工表面粗糙度的微线段齿轮为对象进行仿真,为微线段齿轮加工方法和工艺选择提供参考。  相似文献   

7.
考虑摩擦的圆柱面切向接触刚度分形模型研究*   总被引:1,自引:0,他引:1  
为了更准确地计算圆柱面切向接触刚度,本文考虑摩擦因素的影响,在圆柱面分形接触模型的基础上,引入存在摩擦时弹塑性变形的临界面积公式,并利用切向接触刚度的基本理论,推导考虑摩擦的圆柱面切向接触刚度分形模型,并通过Matlab对上述模型进行仿真,研究不同参数(摩擦因数、分形维数、粗糙度幅值 、材料的特性参数、曲率半径)以及接触的形式对切向接触刚度的影响。仿真结果表明:切向接触刚度与法向载荷成正比关系,但随分形维数取值范围的变化分别呈现指数与线性规律。摩擦因数与切向接触刚度成反比关系;材料的特性参数对切向刚度的影响,不仅与分形维数有关,还与自身取值关联;分形维数,粗糙度幅值与切向刚度的关系,受分形维数和材料特性参数的影响呈现正比或反比趋势。另外,内接触比外接触时的切向刚度大;随着曲率半径的变大,切向刚度增加。该研究为后续开展高副结合面动力学分析提供理论 基础。  相似文献   

8.
结合面法向接触阻尼建模时,只考虑微凸体弹性变形时的弹性能和塑性变形时的损耗能是不完全的,因为微凸体存在弹塑性变形情况。将微凸体弹塑性变形时的法向接触载荷"分离"为弹性载荷和塑性载荷两部分,得到微凸体弹塑性变形时的弹性能和损耗能,建立更加完善、合理的结合面法向接触阻尼模型。将结合面法向接触动力学模型等效为弹簧和黏性阻尼器,建立包括微凸体三种变形状况的结合面法向接触阻尼损耗因子和法向接触阻尼系数的解析模型,并量纲一化处理。仿真结果表明,分形维数D和分形粗糙度G~*是影响结合面法向接触阻尼损耗因子和法向接触阻尼系数的最主要参数。在塑性指数f不变,D小于拐点值(D=1.56)时,法向接触阻尼系数随着G~*的增大而增大;当D超过拐点值时,G~*越大,法向接触阻尼系数减小。当G~*不变,D1.66时,?越大,法向接触阻尼系数越小;当D1.66时,法向接触阻尼系数随?的变化很小。利用线轨滑台模态试验验证所建模型的准确与可靠性。  相似文献   

9.
基于Hertz接触理论和分形理论,提出利用两椭圆体的表面接触系数对微凸体分布函数进行修正,引入微凸体的临界弹塑性变形接触面积,推导出变双曲圆弧齿线圆柱齿轮接触面切向刚度的分形模型。通过数值仿真论证了表面接触系数的合理性,并分析出主要参数(法向载荷、分形维数、粗糙度幅值、切向载荷、材料特性参数)对切向刚度的影响。结果表明,法向载荷与切向刚度成正比关系,但当分形维数的取值范围不同时,两者的变化规律有着较大的差别。当分形维数增大时,切向刚度先增大后减小,在分形维数为1.85时达到最大值。切向刚度随着粗糙度幅值和切向载荷的增大而减小,随着材料特性参数的增大而增大。该模型的建立为研究变双曲圆弧齿线圆柱齿轮接触面的切向刚度提供了理论依据。  相似文献   

10.
为准确计算高速轮轨粗糙表面法向和切向接触刚度,基于W-M函数分形理论建立高速轮轨表面粗糙度三维数值模型;分析轮轨法向和切向接触刚度理论,运用有限元法离散轮轨接触面建立轮轨粗糙表面接触有限元简化模型;基于罚函数的面-面接触算法定义轮轨接触,加载位移载荷计算轮轨法向和切向接触刚度。计算结果表明:接触载荷作用下考虑轮轨表面粗糙度可更为准确地计算法向和切向接触刚度;轮轨法向接触刚度受法向载荷影响较大,且随着法向载荷的增加而增加,而摩擦因数对法向接触刚度的影响甚微;轮轨切向接触刚度随着法向载荷和摩擦因数的增加而增加,随着切向载荷的增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号