首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 666 毫秒
1.
用于驾驶机器人的车速跟踪多机械手协调控制方法   总被引:1,自引:1,他引:0  
提出一种用于驾驶机器人的车速跟踪多机械手协调控制方法。建立了驾驶机器人车速跟踪多机械手/腿控制模型,在此基础上设计了驾驶机器人车速跟踪协调控制器,通过油门/离合器协调控制器实现了车辆的平稳起步和平顺换挡,通过发动机/制动器切换控制器实现了驾驶机器人对给定车速的准确跟踪。实车试验结果表明,提出的方法能合理地协调控制驾驶机器人的油门、制动、离合机械腿和换挡机械手,实现对目标车速的跟踪控制,驾驶机器人完全能够代替试验人员进行各种汽车试验。  相似文献   

2.
汽车驾驶机器人多机械手协调控制研究   总被引:4,自引:0,他引:4  
汽车驾驶机器人研究中的一个关键问题就是多机械手的协调控制.为了实现驾驶机器人换档机械手和油门、离合、制动机械腿的综合协调控制,最终实现对给定循环行驶工况的车速跟踪,首先建立了基于Saridis G N三级控制架构的驾驶机器人递阶控制模型体系结构,然后在此基础上提出了驾驶机器人多机械于协调控制方法,并设计了油门/离合器协调控制器和油门/制动切换控制器.试验结果表明,本文提出的方法能合理协调控制汽车驾驶机器人油门、制动、离合机械腿和换挡机械手,实现了车辆的平稳起步,平顺换挡以及对给定车速的跟踪.  相似文献   

3.
李爱凡  杨涛 《机电工程技术》2009,38(6):19-22,116
车辆在低附着弯道路面上制动是一种非常危险的工况.本文从车辆在低附着弯道路面上制动整车受力的角度出发,分析了车辆弯道制动时ABS控制的不足,提出了车辆ABS与横摆力矩控制协调控制的制动力控制策略.利用模糊控制原理设计了横摆力矩控制器,在制动车辆ABS的基础上,通过对车辆的横摆力矩控制和车轮滑移率的调节,实现了制动过程中对附加横摆力矩的动态调整,从而可以在不增加硬件成本的条件下实现车辆在低附着弯道路面上制动的稳定控制.最后进行仿真试验验证了该控制方法的有效性.  相似文献   

4.
为了适应特殊情况下需要远程驾驶车辆的需求,提出了一套基于DSP和LaVIEW的车辆远程驾驶系统设计方法。系统主要由操纵平台、通信系统、远程车辆组成。操纵平台利用DSP开发板采集油门、刹车、方向盘、挡位等传感器信号来获取远程驾驶人员的操纵指令,并且通过LaVIEW软件编写的上位机程序对信号进行实时处理;通信系统是由TCP/IP协议构成的无线局域网络,用于实时地传输远程驾驶人员的操纵命令以及回传远程车辆的画面、车速等信息;远程车辆上安装了摄像头以及方向盘、油门、刹车等部件的执行机构。最终,远程车辆根据接收的控制命令实现了对车辆实时地加速、制动、转向、换挡等操纵。  相似文献   

5.
汽车底盘系统分层式协调控制   总被引:6,自引:1,他引:5  
将汽车底盘控制系统分成上层与下层控制部分进行分层式协调控制.下层控制器为悬架、转向和制动系统三个单独的控制器,用以执行各子系统的控制任务,实现各自的性能指标;上层协调器主要接受来自下层控制器的决策信息,对其进行整体协调分析,并及时修改下层控制的决策,从实现整车综合性能最优的目标出发来执行协调优化任务.仿真及试验结果表明,采用分层式协调控制策略对汽车底盘系统进行控制,能够很好地改善整车的平顺性、安全性及操纵稳定性,控制效果要优于采用单独的子控制器的控制效果.  相似文献   

6.
为了缩短在进行汽车试验前驾驶机器人对不同车型的适应性调整时间,提出了一种用于驾驶机器人的车辆性能自学习方法,对影响驾驶机器人驾驶行为的车辆尺寸和汽车性能参数进行自学习。车辆尺寸的学习通过示教再现实现,汽车性能自学习中油门和制动执行器的指令信号通过所需的车辆驱动功率来确定。对因长时间驾驶引起的控制参数变化进行在线优化,以补偿长时间试验过程中汽车零部件的磨损。试验结果表明,提出的方法实现了驾驶机器人的自学习、自适应、自补偿,驾驶机器人具有良好的车型适应能力,车速跟踪精度满足试验的要求,能消除汽车试验中人为因素的影响。  相似文献   

7.
为改善车辆操纵稳定性,基于线性车辆模型设计后轮转向控制器及车辆稳定控制器,提出一种主动后轮转向与转矩分配协调控制策略。搭建由驾驶员模型、七自由度车辆模型、后轮转向控制器及转矩分配等模块组成的"人-车-路"闭环控制系统,开展双移线仿真试验,并与同参数比例四轮转向车辆及前轮转向车辆仿真结果对比。结果表明:所提出的主动后轮转向与转矩分配协调控制控制效果最佳。在低附着路面表现更为明显,不仅使车身始终保持较好转向姿态,还有效改善了车辆的稳定性。  相似文献   

8.
混合动力电动汽车冲击度的试验   总被引:2,自引:1,他引:2  
为提高混合动力电动汽车的驾驶性能,将冲击度作为评价指标研究车辆的驾驶性能.通过试验研究找到提高整车控制品质、改善混合动力电动汽车驾驶性能的方法.以含有机械式自动变速器的某型混合动力轿车为研究对象,通过对车辆在整个行驶过程中产生冲击度的机理进行分析,设计出相应的试验方案,对车辆在起步、驱动状态切换、换挡以及制动等典型过程中的冲击度进行试验研究.试验结果表明,优化离合器分合速度,协调控制发动机和电动机的转速、转矩可以有效减小车辆冲击度.  相似文献   

9.
基于状态识别的整车操纵性和平顺性的协调控制   总被引:3,自引:1,他引:3  
建立汽车底盘中悬架、制动系统及转向时的操纵动力学模型,分析各个系统运动关系之间的相互影响.为改善车辆在多工况下的平顺性和操纵性,在设计出基于状态识别的协调控制器的基础上,对悬架、转向和制动系统分别采用PID、滑模变结构和变滑移率逻辑门限值的控制方法,并对不同工况下车辆运动信息进行控制分类,同时通过大量的仿真对各控制参数进行调试,设计出最佳的控制参数值.在此基础上,设计出整车三个控制系统软硬件,进行状态识别模式下的汽车底盘控制系统实车试验.结果表明,该方法在复杂工况下能够有效地抑制车身的垂直振动、俯仰和侧倾,极大地改善整车的平顺性;车辆转向或转向制动时,直接横摆力矩控制器能够根据上层协调器的信息,较好地跟踪车身的目标横摆角速度,提高整车的操纵稳定性;制动子系统控制器能够根据上层协调器提供的实时目标滑移率,控制车轮获得最大制动力,缩短制动距离,提高了制动性能.  相似文献   

10.
混合动力汽车下坡辅助控制方法   总被引:1,自引:0,他引:1  
为减轻混合动力汽车(Hybrid electric vehicle,HEV)下坡过程中驾驶员的驾驶负担,提高车辆运行的安全性和经济性,提出一种满足驾驶员主观意图、确保下坡安全性和提高制动能量回收性能的下坡辅助控制(Down-hill assist control,DAC)方法。上层根据车辆下坡行驶过程中安全性需求,以满足驾驶员的主观驾驶意图为原则,提出下坡辅助控制启动和退出策略,并制定辅助控制的目标。中层依据辅助控制目标,利用比例积分微分(Proportional integral derivative,PID)方法计算总需求制动转矩,根据总制动转矩、各制动系统的制动能力和制动原理,提出电机单独制动、电机-发动机联合制动及电机-发动机-液压联合制动的转矩分配策略。下层针对电机、发动机和液压系统响应特性的不同,提出发动机接入过程的动态协调控制策略与液压转矩变化过程的动态协调控制策略。进行实车验证,结果表明该方法在减轻驾驶员的操纵负担、提高混合动力汽车下坡路段安全性的同时,能降低油耗,并改善舒适性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号