首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《机电工程》2021,38(10)
为了充分利用数据间的时序特性,实现对滚动轴承剩余使用寿命(RUL)的精确预测,提出了一种基于卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)的滚动轴承RUL智能预测方法。首先,提取出数据中的12个时域特征和4个频域特征作为神经网络的输入;然后,设计了一种基于注意力机制的CNN-BiLSTM算法,对输入数据进行了退化特征提取,并进一步解决了BiLSTM在远距离信号传输中信息丢失的问题;最后,采用PHM 2012轴承退化数据集,通过轴承加速退化PRONOSTIA实验平台,验证了所提方法的有效性,并将其结果与FCNN、CNN-BiLSTM和CNN-LSTM-AM算法所得结果进行了对比分析。研究结果表明:与采用其他方法所得结果相比,采用本文所提方法得到的轴承RUL预测RMSE值分别降低了25.85%、7.32%和10.59%,Score得分则分别提高了3.65%、2.12%和1.58%,该结果验证了本文所提方法在轴承RUL预测应用方面的优越性。  相似文献   

2.
滚动轴承作为最常见的旋转机械零部件,其服役状态下产生的振动信号具有典型的周期性特征,为充分发挥轴承振动信号的这一特征,提出一种融合变维门控循环单元(GRU)和双向长短时记忆单元(BiLSTM)的神经网络模型,并用于轴承寿命预测。该模型先将原始振动信号分成训练集和测试集,然后将轴承振动信号直接输入到变维GRU层中,由变维GRU层捕获原信号的特征并建立特征间的关联性,然后将预处理后的数据输入到BiLSTM层中,由BiLSTM对轴承寿命进行预测。通过使用试验台数据集进行试验,验证了该模型在轴承寿命预测上具有较高的精度,具有一定的工程指导意义。  相似文献   

3.
针对施工升降机电机轴承剩余寿命预测问题,提出一种基于算术优化算法(AOA)和长短时记忆网络(LSTM)融合算法的轴承剩余寿命预测方法。首先,对原始振动信号提取时域和频域特征指标,利用随机森林算法对提取的特征指标进行重要度分析,并构建退化特征决策表;然后,通过AOA优化算法优化LSTM中的超参数,选择最优超参数建立预测模型;最后,把退化特征输入预测模型中进行预测,并通过均方根误差(RMSE)和平均绝对误差(MAE)评估预测模型。XJTU-SY数据集实验验证,结果表明:AOA-LSTM模型RMSE和MAE分别为5.56%和4.37%,与MLP模型相比,RMSE和MAE分别降低31.58%和29.61%;与循环神经网络(RNN)模型相比,RMSE和MAE分别降低24.66%和25.49%,验证所提方法的有效性。  相似文献   

4.
针对金属磁记忆信号容易受到环境噪声影响,使得缺陷信号可检测性降低的情况,首先,利用传统的奇异值分解方法对场桥主梁磁记忆信号进行分解和重构,发现尽管可以取得较为理想的降噪效果,但如何自适应确定重构时的奇异值个数仍存在困难;然后,将磁记忆信号按照二进递推方法构造矩阵,重复进行奇异值分解可以获得具有不同分辨率的近似信号和细节信号,从而形成多分辨奇异值分解,其中细节信号对应磁记忆中的噪声成分,近似信号为去除噪声之后的有效磁记忆信号,从而实现了磁记忆信号的降噪。将该方法用于某场桥主梁磁记忆信号的处理,有效地提高了重构信号的信噪比,准确地判断出了该主梁的应力集中区域,为评估其应力状态和早期故障诊断奠定了基础。  相似文献   

5.
针对滚动轴承剩余使用寿命预测方法中出现的退化阶段起始点识别困难和退化特征难以提取的问题,提出了一种基于空洞卷积神经网络(Convolutional Neural Network, CNN)和长短时记忆(Long and Short-Term Memory, LSTM)网络的滚动轴承剩余使用寿命预测方法。首先,对归一化幅值后的滚动轴承数据集构建了二次函数退化标签,避免滚动轴承退化阶段起始点的识别。其次,采用空洞CNN提取滚动轴承的退化特征,将提取的退化特征输入到LSTM网络中进行学习,并通过全连接层来进行退化特征到剩余使用寿命标签的映射,从而实现滚动轴承的剩余使用寿命预测。最后,通过PHM2012滚动轴承数据集对所提出的滚动轴承剩余使用寿命预测方法的有效性进行了验证。试验结果表明,所提方法具有较好的预测效果。  相似文献   

6.
滚动轴承作为机械设备最基本的零件之一,其振动信号具有非线性、非平稳的特点,针对这一特点,提出了变分模态分解(variational mode decomposition,VMD)和蝗虫优化算法(grasshopper optimization algorithm, GOA)与长短期记忆网络(long short-term memory,LSTM)相结合的滚动轴承剩余寿命预测方法。首先,利用VMD对包含噪声的原始振动信号进行分解,将其分解项去除噪声后再进行重构;然后,对降噪后的信号进行时域特征提取,将提取到的特征构造成连续的时间序列,作为输入特征值,并建立退化指标。利用GOA方法对LSTM模型的参数进行优化,构建基于GOA-LSTM的预测模型。最后,通过XJTU-SY滚动轴承加速寿命试验数据集对该方法的有效性进行验证。研究结果表明,与LSTM、VMD-LSTM模型相比,VMD-GOA-LSTM模型的预测精度更高,泛化能力更好,能够更好地对滚动轴承的剩余寿命进行预测。  相似文献   

7.
基于图像奇异值分解的滚动轴承故障模式识别   总被引:1,自引:0,他引:1  
基于滚动轴承振动信号的三维和二维谱图中包含丰富故障信息和图像矩阵奇异值能够反映图像本质的客观事实,对滚动轴承振动信号二维灰度图矩阵进行了奇异值分解。应用奇异值欧氏距离作为两幅图像相似程度的度量尺度从而实现轴承的故障诊断。对实测轴承故障数据的分析表明:该方法具有较高的故障模式分类精度,但随着故障尺寸的增加,由于轴承各部件之间的影响,其诊断正确率会有所降低。与基于图像纹理特征的灰关联识别结果对比表明,该方法总体识别效果更好。  相似文献   

8.
提出多分辨奇异值分解(Multi-resolution singular value decomposition, MRSVD)的概念,基于矩阵二分递推构造原理,利用奇异值分解(Singular value decomposition, SVD)获得具有不同分辨率的近似和细节信号,以多分辨率来展现信号不同层次的概貌和细部特征.给出MRSVD的分解和重构算法,并从理论上证明这种分解方式的多分辨分析特性.研究结果表明,MRSVD可以精确地检测出信号中的奇异点位置,克服小波检测时的奇异点偏移缺陷,并具有优良的消噪能力,可实现零相移消噪,此外还具有微弱故障特征提取能力,在对一个轴承振动信号的处理中,提取到其中隐藏的周期性冲击特征,实现对轴承损伤的准确诊断.相应地与小波变换结果进行比较,证明MRSVD在信号处理和故障诊断领域是一种很有应用前景的方法.  相似文献   

9.
孟宗  刘子涵  吕蒙 《中国机械工程》2020,31(20):2420-2428
针对含噪信号的有效奇异值个数难以确定的问题,提出了 一种改进的奇异值分解降噪方法——奇异值累积法.该方法通过计算奇异值的实际下降值与奇异值平均下降速度累积量的差值,并取该差值最大值点的位置作为有效奇异值的分界点来确定有效奇异值的个数.在此基础上,提出了一种基于奇异值累积法与快速谱峭度的滚动轴承故障诊断方法.采用奇异值累...  相似文献   

10.
针对滚动轴承退化数据的复杂性和相关性,以及传统的寿命预测方法不能充分利用在线数据和非全寿命生命周期数据,从而导致预测精度不高的问题,提出了一种基于代价最小化的参数动态更新的LSTM预测模型.该模型采用离散小波变换对滚动轴承振动数据进行去噪,并提取时频域特征完成LSTM的训练与测试,利用在线监测数据滚动更新LSTM参数以...  相似文献   

11.
为解决传统滚动轴承寿命预测方法精度差,效率低的问题.提出一种基于双向堆叠简单循环单元(Bidirectional Stack Simple Recurrent Unit,Bi-SRU)的预测方法.从原始信号中提取多种时、频域特征构建多维数据集,增强信息表征,避免了单一特征对轴承退化能力反映不足的缺点.依靠循环神经网络(...  相似文献   

12.
董文智  张超 《机械强度》2012,34(2):183-189
提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和奇异值差分谱的轴承故障诊断方法。首先将非平稳的原始轴承振动信号通过EEMD方法分解成若干个平稳的本征模函数(intrinsic modefunction,IMF);由于背景噪声的影响,从各个IMF的频谱中难以准确地得到故障频率。对IMF分量构建Hankel矩阵,并进行奇异值分解,进一步找到奇异值差分谱,根据奇异值差分谱理论对某IMF分量进行消噪和重构,然后再求其频谱,便能准确地得到故障频率。实验结果表明,所提出的方法能有效地应用于轴承的故障诊断。  相似文献   

13.
基于奇异值分解的铣削力信号处理与铣床状态信息分离   总被引:11,自引:2,他引:11  
利用连续截断信号构造矩阵,通过奇异值分解可以将信号表示为一系列分量信号的简单线性叠加,证明了各分量之间是两两正交的,且具有零相位偏移特性.根据分量信号的信息量可以确定合理的矩阵结构.对铣削力信号的处理实例表明,奇异值分解方法分离出机床主轴旋转基频近乎完整的时域波形,分辨出两个频率很接近的信号分量,发现信号中隐藏的调幅现象,证实机床的爬行并确定爬行频率.最后与小波变换的结果进行比较,表明这一方法对铣削力信号的分离效果优于小波变换.  相似文献   

14.
《机械强度》2016,(5):922-926
针对局部均值分解(Local Mean Decomposition,LMD)在提取故障特征时易受到噪声干扰的问题,提出了一种基于局部均值分解和独立分量分析(Independent Component Analysis,ICA)的滚动轴承故障诊断方法。该方法首先采用LMD方法提取信号PF分量;其次,对PF分量进行ICA盲源分离,得到PF分量的估计信号,有效去除了分量中的噪声成分;然后,提取估计信号的互信息、相关系数和近似熵作为特征向量;最后,采用SVM对特征向量进行故障分类,通过特征提取和故障诊断实验,结果表明LMD-ICA方法的故障识别率明显高于传统LMD方法。  相似文献   

15.
16.
王永鼎  金子琦 《机械强度》2021,43(4):793-797
针对滚动轴承故障识别过程中,难以提取细微故障特征的问题,提出一种基于融合卷积神经网络与基于粒子群优化算法的支持向量机相结合的滚动轴承故障诊断方法.该方法将轴承振动信号同时作为一维卷积神经网络和二维卷积神经网络的输入信号,并在汇聚层中将提取到的故障信息融合,最后通过优化后的分类器提高故障识别准确率.为了验证该方法的诊断性能,将与融合卷积神经网络同规格的一维卷积神经网络和二维卷积神经网络进行对比.试验结果表明,该方法不仅可以提高故障识别准确率,还可以在信号受到噪声污染时保持良好的诊断性能.  相似文献   

17.
基于阶次跟踪和经验模态分解的滚动轴承包络解调分析   总被引:5,自引:0,他引:5  
针对齿轮箱升降速过程中振动信号非平稳的特点,将计算阶次跟踪方法与经验模态分解技术相结合,提出一种研究旋转机械瞬态信号故障诊断的分析方法。首先对齿轮箱启动时测得的振动信号进行时域采样,再对时域信号进行等角度重采样,将其转化为角域准平稳信号,然后对角域里的信号进行经验模态分解得到多个固有模态函数分量,最后对包含轴承故障信息的高频固有模态分量进行包络解调分析。结果显示:阶次跟踪技术能够有效地避免传统频谱方法所无法解决的“频率模糊”现象,将非平稳信号转化为准平稳信号;经验模态分解方法能够提取包含故障信息的固有模态分量,将两种方法相结合是对传统频谱分析法的有力补充,具有很广阔的应用前景。  相似文献   

18.
考虑轴承故障初期具有特征信号微弱、易受噪声干扰以及非线性强等特点.基于分形盒维数提出改进变分模态分解提取轴承故障信号非线性信息方法(Improved Variational Mode Decomposition for Nonlinear Features Extraction,IVMD-NFE).又因非线性信号的多测...  相似文献   

19.
多尺度模糊熵能够较好的量化振动信号的复杂程度,但缺乏对其他信道信息的有效利用,为了充分利用其他信道的振动信息,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中.为了准确提取轴承信号中的故障特征,提出了基于自适应噪声完备集成经验模态分解(Complete Ensemble Empirical Mode ...  相似文献   

20.
基于电阻变化的高周疲劳寿命预测   总被引:2,自引:0,他引:2  
孙斌祥  郭乙木 《机械强度》2002,24(4):579-583
研究金属材料在不同损伤机理时的基于电阻变化的损伤定义,在传导电流的导电截面与承载截面等价的假设条件下,其与有效截面的损伤定义等价。针对纯弯旋转高频疲劳试验,分析考虑材料损伤分布不均匀及电阻率变化的损伤最大值的测量公式,其具有超几何函数的形式;分析表明在材料损伤为0-0.6时其与假设损伤均匀且不计电阻率的情况差别不大,并提出一种近似公式。对结构钢的高周疲劳进行测量,结果与理论预测能较好符合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号