共查询到17条相似文献,搜索用时 62 毫秒
1.
基于改进蚁群算法的移动机器人路径规划研究 总被引:6,自引:0,他引:6
针对蚁群算法在复杂环境下收敛速度慢且易陷入局部最优值的问题,提出一种改进的蚁群优化算法。该方法依据起始点和目标点位置信息选择全局有利区域增加初始信息素浓度,提高前期蚂蚁搜索效率;增加避障策略,避免蚂蚁盲目搜索产生大量交叉路径并有效减少蚂蚁死锁数量;采用动态参数控制的伪随机转移策略,提出优质蚂蚁信息素更新原则,自适应调整挥发系数,提高算法全局性;进行二次路径规划,优化路径并降低移动机器人能耗的损失。实验结果表明,该算法有较高的全局搜索能力,收敛速度明显加快,并且可以有效提高移动机器人工作效率,验证了该算法的有效性和优越性。 相似文献
2.
针对寻找机器人在障碍环境下到达特定目标最短路径问题,提出一种基于改进蚁群算法的路径规划方法。该算法通过赋予蚂蚁类似于人的方向感,使其具备局部路径思考能力,同时在蚁群算法中引入确定性选择和随机性选择相结合的方法,以及确定性选择概率和信息素挥发系数自适应调整策略,极大地改善了蚁群算法的全局搜索能力和搜索速度,并且显著地提高了算法寻找最优解的能力。在基于栅格地图的仿真测试条件下,该方法在不同问题规模和障碍条件下,均能达到很好的优化结果,并且满足实时路径规划的搜索速度要求。 相似文献
3.
为了提高机器人路径规划算法的收敛速度和收敛精度,提出了基于改进遗传算法的机器人路径规划方法。介绍了栅格建模方法,分析了传统蚁群算法原理。提出了蚂蚁相遇策略提高了算法搜索效率,提出了蚂蚁回退策略避免陷入U形陷阱,设置了信息素感应阈值扩大了算法前期的搜索范围,改进了信息素残留方法使蚁群能够记忆最优路径,提出了信息素自适应调整方法,兼顾了算法前期的大范围搜索和后期的快速收敛。经仿真实验验证,相比于传统蚁群算法,改进算法具有更快的收敛速度、更优的规划结果,且改进算法的蚁群轨迹更加集中至最优解附近。 相似文献
4.
5.
针对基本蚁群算法在机械手臂的工作平台较小、障碍物与目标物体的尺寸相差不多时存在的局限性,提出了基于改进型蚁群算法的伺服机械手臂的路径规划.探讨了栅格划分大小对路径规划速度和精度的影响,改进了蚁群算法的局部信息素更新方法,扩大了蚂蚁的视野域范围.实验结果表明:改进型蚁群算法能在较短时间内寻找出较优的路径,实现了机械手臂运动过程中躲避障碍物的功能,提高了全局搜索性能. 相似文献
6.
7.
基于改进蚁群算法的移动机器人全局路径规划方法研究 总被引:1,自引:0,他引:1
《机械制造与自动化》2017,(6)
针对基本蚁群算法在移动机器人全局路径规划中收敛速度慢,易陷入局部最优解的问题,提出一种改进的蚁群算法。将A*算法的根据目标点自适应调整启发函数的思想应用于蚁群算法中,增加目标点对启发函数的影响;改进状态选择策略,增加解的多样性;混合使用多种信息素分配机制,提高算法的收敛速度。通过布置相同的路径搜索条件,在MATLAB语言环境下进行仿真分析,验证了改进的算法是可行有效的。 相似文献
8.
9.
10.
移动机器人作为智能化发展的重要产物之一,为人们提供扫地、擦地、擦窗户等服务.此类型机器人在移动路径规划上尚存在一定提升空间.为了改善机器人移动路径规划精度,加快路径搜索收敛速度,在传统蚁群算法基础上,采用蚂蚁相遇方法,在保留蚂蚁遍历路径记忆能力的同时,对算法路径搜索、路径选择、挥发系数进行改进.经过仿真分析验证改进后,算法收敛性能及路径规划性能得到提升. 相似文献
11.
改进型蚁群算法在路径规划中的研究 总被引:1,自引:0,他引:1
为了解决蚁群算法在路径规划中初始信息素匮乏、路径搜索规划速度慢、需要更多的迭代次数才能找出近似最优解、准确性在搜索空间很大的情况下会出现无法找到最优解的问题,提出一种适用于全局路径规划的改进型蚁群算法。在规划路径初始时利用A*算法先建立每个节点间最优路径代价函数,以减少蚁群算法在路径搜索中的盲目性;引入“虚拟终点”,以减小蚁群算法的搜索空间,降低迭代次数,提高蚁群算法的效率和路径规划准确性。通过多次实验,表明改进型蚁群算法在路径搜索效率和路径规划能力上都明显提高。 相似文献
12.
基于改进蚁群算法的移动机器人最优路径规划 总被引:1,自引:0,他引:1
针对传统蚁群算法用于移动机器人路径规划时存在初期盲目性搜索、收敛速度慢及转弯次数多等问题,提出了一种改进蚁群算法.该算法将栅格法建立的环境模型划分为3种不同搜索区域,运用数学模型按距离比值方法对初始信息素差异化分配,避免蚂蚁前期盲目性搜索;基于可选孙节点个数的区域安全信息和转角启发信息选择下一子节点,并构造目标性启发函... 相似文献
13.
针对传统蚁群算法在大规模和复杂环境中,全局搜索效率差,收敛速度慢,路径转弯次数过多且不够平滑等问题,本文提出一种改进蚁群算法。该方法通过动态更新不同等级蚂蚁路径上的信息素,加快算法的收敛速度;通过引入距离函数和方向函数作为启发因子,改善路径搜索质量;采用一种改进自适应伪随机转移策略,减小陷入局部最优解的概率;在最优路径的基础上引入三次均匀B样条曲线进行优化,提高路径的平滑性。通过在2种不同规模环境下的路径规划实验表明,本文算法相比传统算法在分别减少55.6%和59.4%转弯次数的基础上,提升87.5%和100%的收敛速度,验证了本文算法的优越性。最后,以QBot2e为平台,将本算法应用到室内自动导引车(AGV)路径规划中,进一步验证了算法的实用性。 相似文献
14.
基于改进蚁群算法的装配序列规划 总被引:1,自引:0,他引:1
针对装配序列规划问题,分析了基本蚁群系统的不足,提出了面向装配序列规划的改进蚁群算法,来获得最优或次最优的装配序列.改进蚁群算法中,将装配操作约束作为启发式信息引入状态转移概率中,通过获取零部件之间的装配关系设定可行转移范围.通过信息素残留系数的动态变化和影响转移概率的α、β参数的动态设置,提高了蚁群的收敛速度并有效地避免了其陷入局部最优解.通过实例验证了改进算法的有效性. 相似文献
15.
对采用表面安装技术的印刷电路板进行自动光学检测时,检测路径规划属于组合优化问题,每个检测窗口又存在一定的可移动范围.针对以上问题文中提出了首先用蚁群算法来求能覆盖检测对象的最少检测窗数,并确定每窗口的可移动范围;然后再结合逐次逼近来确定检测路线和每个检测窗的准确位置.模拟实验结果表明,该方案求出的路径规划检测窗数量最少,检测路线最短. 相似文献
16.
针对基本蚁群算法存在收敛速度慢,计算周期长,易死锁等问题,提出了蚂蚁回退、蚂蚁相遇、带交叉点的路径交叉的改进算法.通过随机数引入和状态转移概率的应用,平衡了各路径信息素,从而有效的避免陷入局部最优,使得算法在收敛速度和执行效率上得到有效提高.仿真结果表明:该算法在较短的时间内能够规划出较优的路径. 相似文献