首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient symbolic and explicit-state model checking approaches have been developed for the verification of linear time temporal logic (LTL) properties. Several attempts have been made to combine the advantages of the various algorithms. Model checking LTL properties usually poses two challenges: one must compute the synchronous product of the state space and the automaton model of the desired property, then look for counterexamples that is reduced to finding strongly connected components (SCCs) in the state space of the product. In case of concurrent systems, where the phenomenon of state space explosion often prevents the successful verification, the so-called saturation algorithm has proved its efficiency in state space exploration. This paper proposes a new approach that leverages the saturation algorithm both as an iteration strategy constructing the product directly, as well as in a new fixed-point computation algorithm to find strongly connected components on-the-fly by incrementally processing the components of the model. Complementing the search for SCCs, explicit techniques and component-wise abstractions are used to prove the absence of counterexamples. The resulting on-the-fly, incremental LTL model checking algorithm proved to scale well with the size of models, as the evaluation on models of the Model Checking Contest suggests.  相似文献   

2.
Recent development in computer hardware has brought more widespread emergence of shared memory, multi-core systems. These architectures offer opportunities to speed up various tasks—model checking and reachability analysis among others. In this paper, we present a design for a parallel shared memory LTL model checker that is based on a distributed memory algorithm. To improve the scalability of our tool, we have devised a number of implementation techniques which we present in this paper. We also report on a number of experiments we conducted to analyse the behaviour of our tool under different conditions using various models. We demonstrate that our tool exhibits significant speedup in comparison with sequential tools, which improves the workflow of verification in general.  相似文献   

3.
We propose a parallel distributed memory on-the-fly algorithm for enumerative LTL model checking. The algorithm is designed for networks of workstations communicating via MPI. The detection of cycles (faulty runs) effectively employs the so-called back-level edges. In particular, a parallel level synchronized breadth-first search of the graph is performed to discover all back-level edges, and for each level the back-level edges are checked in parallel by a nested search procedure to confirm or refute the presence of a cycle. Several improvements of the basic algorithm are presented and advantages and drawbacks of their application to distributed LTL model checking are discussed.Research partially supported by grant No. 1ET-408050503 and the Grant Agency of Czech Republic grant No. 201/03/0509.
  相似文献   

4.
Flash memory efficient LTL model checking   总被引:1,自引:0,他引:1  
As the capacity and speed of flash memories in form of solid state disks grow, they are becoming a practical alternative for standard magnetic drives. Currently, most solid-state disks are based on NAND technology and much faster than magnetic disks in random reads, while in random writes they are generally not.So far, large-scale LTL model checking algorithms have been designed to employ external memory optimized for magnetic disks. We propose algorithms optimized for flash memory access. In contrast to approaches relying on the delayed detection of duplicate states, in this work, we design and exploit appropriate hash functions to re-invent immediate duplicate detection.For flash memory efficient on-the-fly LTL model checking, which aims at finding any counter-example to the specified LTL property, we study hash functions adapted to the two-level hierarchy of RAM and flash memory. For flash memory efficient off-line LTL model checking, which aims at generating a minimal counterexample and scans the entire state space at least once, we analyze the effect of outsourcing a memory-based perfect hash function from RAM to flash memory.Since the characteristics of flash memories are different to magnetic hard disks, the existing I/O complexity model is no longer sufficient. Therefore, we provide an extended model for the computation of the I/O complexity adapted to flash memories that has a better fit to the observed behavior of our algorithms.  相似文献   

5.
Innovations in Systems and Software Engineering - We present in this paper a new approach to the static analysis of concurrent programs with procedures. To this end, we model multi-threaded...  相似文献   

6.
We report here on an experimental investigation of LTL satisfiability checking via a reduction to model checking. By using large LTL formulas, we offer challenging model-checking benchmarks to both explicit and symbolic model checkers. For symbolic model checking, we use CadenceSMV, NuSMV, and SAL-SMC. For explicit model checking, we use SPIN as the search engine, and we test essentially all publicly available LTL translation tools. Our experiments result in two major findings. First, most LTL translation tools are research prototypes and cannot be considered industrial quality tools. Second, when it comes to LTL satisfiability checking, the symbolic approach is clearly superior to the explicit approach.  相似文献   

7.
Regular model checking is a form of symbolic model checking for parameterized and infinite-state systems whose states can be represented as words of arbitrary length over a finite alphabet, in which regular sets of words are used to represent sets of states. We present LTL(MSO), a combination of the logics monadic second-order logic (MSO) and LTL as a natural logic for expressing the temporal properties to be verified in regular model checking. In other words, LTL(MSO) is a natural specification language for both the system and the property under consideration. LTL(MSO) is a two-dimensional modal logic, where MSO is used for specifying properties of system states and transitions, and LTL is used for specifying temporal properties. In addition, the first-order quantification in MSO can be used to express properties parameterized on a position or process. We give a technique for model checking LTL(MSO), which is adapted from the automata-theoretic approach: a formula is translated to a buchi regular transition system with a regular set of accepting states, and regular model checking techniques are used to search for models. We have implemented the technique, and show its application to a number of parameterized algorithms from the literature.  相似文献   

8.
Certain behavioral properties of distributed systems are difficult to express in interleaving semantics, whereas they are naturally expressed in terms of partial orders of events or, equivalently, Mazurkiewicz traces. Two examples of such properties are serializability of a database and global snapshots of concurrent systems. Recently, a modest extension for LTL by an operator that expresses snapshots, has been proposed. It combines the ease of linear (interleaving) specification with this useful partial order concept. The new construct allows one to assert that a global snapshot appeared in the past, perhaps not in the observed execution sequence, but possibly in an equivalent one.  相似文献   

9.
Recent technological developments made various many-core hardware platforms widely accessible. These massively parallel architectures have been used to significantly accelerate many computation demanding tasks. In this paper, we show how the algorithms for LTL model checking can be redesigned in order to accelerate LTL model checking on many-core GPU platforms. Our detailed experimental evaluation demonstrates that using the NVIDIA CUDA technology results in a significant speedup of the verification process. Together with state space generation based on shared hash-table and DFS exploration, our CUDA accelerated model checker is the fastest among state-of-the-art shared memory model checking tools.  相似文献   

10.
针对当前的模型检测工具不能对时间自动机直接检测带时间约束的线性时序逻辑性质的问题,对带时间约束的线性时序逻辑性质的模型检测进行了研究。带时间约束的线性时序逻辑公式转Büchi自动机后,性质自动机的迁移边上含有了时间约束,在对性质自动机和模型自动机的复合进行空性检测时,通过使用不同方法对如何获取性质自动机迁移边上的时间约束进行了研究,实现了对带时间约束的线性时序逻辑性质的检测,扩展了工具CATV的检测范围,方便了用户的使用。  相似文献   

11.
Combining search space partition and abstraction for LTL model checking   总被引:2,自引:0,他引:2  
The state space explosion problem is still the key obstacle for applying model checking to systems of industrial size. Abstraction-based methods have been particularly successful in this regard. This paper presents an approach based on refinement of search space partition and abstraction which combines these two techniques for reducing the complexity of model checking. The refinement depends on the representation of each portion of search space. Especially, search space can be refined stepwise to get a better reduction. As reported in the case study, the integration of search space partition and abstraction improves the efficiency of verification with respect to the requirement of memory and obtains significant advantage over the use of each of them in isolation.  相似文献   

12.
We establish a decidability boundary of the model checking problem for infinite-state systems defined by Process Rewrite Systems (PRS) or weakly extended Process Rewrite Systems (wPRS), and properties described by basic fragments of action-based Linear Temporal Logic (LTL) with both future and past operators. It is known that the problem for general LTL properties is decidable for Petri nets and for pushdown processes, while it is undecidable for PA processes.We show that the problem is decidable for wPRS if we consider properties defined by LTL formulae with only modalities strict eventually, strict always, and their past counterparts. Moreover, we show that the problem remains undecidable for PA processes even with respect to the LTL fragment with the only modality until or the fragment with modalities next and infinitely often.  相似文献   

13.
Studies of cells in silico can greatly reduce the need for expensive and prolonged laboratory experimentation. The use of model checking for the analysis of biological networks has attracted much attention recently. The practical limitations are still the size of the model, and the time needed to generate the state space. This paper is focused on the model checking approach for analysis of piecewise-linear deterministic models of genetic regulatory networks. Firstly, the qualitative simulation algorithm of de Jong et al. that builds the heart of Genetic Network Analyzer (GNA) is revisited and its time complexity is studied in detail. Secondly, a novel algorithm that reduces the state space generation time is introduced. The new algorithm is developed as an abstraction of the original GNA algorithm. Finally, a fragment of linear time temporal logic for which the provided abstraction is conservative is identified. Efficiency of the new algorithm when implemented in the parallel model checking environment is demonstrated on a set of experiments performed on randomly modified biological models. In general, the achieved results bring a new insight into the field of qualitative simulation emerging in the context of systems biology.  相似文献   

14.
SpaceWire是应用于航空航天领域的高速通信总线协议,对SpaceWire设计正确性与可靠性要求极高,由于传统的验证方法,存在不完备性等缺陷,对SpaceWire的严格验证一直是备受关注的问题之一。模型检验以其验证的完备性得到设计人员的重视。提出用线性时态逻辑(LTL)模型检验的方法验证SpaceWire系统的检错机制。在检错模块中,该方法与用分支时态逻辑(CTL)验证方法相比,BDD分配数和状态数明显减少,提高了验证效率,还验证了错误优先级;对检错模块处理的五种错误的发生进行验证,验证结果均为正确。该方法实现了对检错机制的完备性验证。  相似文献   

15.
张斌  罗贵明  王平 《计算机应用》2006,26(10):2490-2493
模型检测的一个主要方法是构建线性与时序逻辑(LTL)公式φ的否定形式等价的Büchi自动机Aφ和系统模型M的正交积,并检测正交积的可接受语言是否为空。通过对Generalized Büchi自动机进行化简,可以减小自动机的状态空间,从而提高模型检测的效率。根据所提出的方法设计并实现的基于LTL和Petri网进行模型检测的工具包,可以有效地对基于Petri网表示的系统模型进行模型检测。  相似文献   

16.
17.
In this work we study hybrid approaches to LTL symbolic model checking; that is, approaches that use explicit representations of the property automaton, whose state space is often quite manageable, and symbolic representations of the system, whose state space is typically exceedingly large. We compare the effects of using, respectively, (i) a purely symbolic representation of the property automaton, (ii) a symbolic representation, using logarithmic encoding, of explicitly compiled property automaton, and (iii) a partitioning of the symbolic state space according to an explicitly compiled property automaton. We apply this comparison to three model-checking algorithms: the doubly-nested fixpoint algorithm of Emerson and Lei, the reduction of emptiness to reachability of Biere et al., and the singly-nested fixpoint algorithm of Bloem et al. for weak automata. The emerging picture from our study is quite clear, hybrid approaches outperform pure symbolic model checking, while partitioning generally performs better than logarithmic encoding. The conclusion is that the hybrid approaches benefit from state-of-the-art techniques in semantic compilation of LTL properties. Partitioning gains further from the fact that the image computation is applied to smaller sets of states.  相似文献   

18.
The state space explosion problem is still the key obstacle for applying model checking to systems of industrial size.Abstraction-based methods have been particularly successful in this regard.This paper presents an approach based on refinement of search space partition and abstraction which combines these two techniques for reducing the complexity of model checking.The refinement depends on the representation of each portion of search space. Especially, search space can be refined stepwise to get a better reduction. As reported in the case study, the Integration of search space partition and abstraction improves the efficiencyof verification with respect to the requirement of memory and obtains significant advantage over the use of each of them in isolation.  相似文献   

19.
Model checking LTL with regular valuations for pushdown systems   总被引:1,自引:0,他引:1  
Recent works have proposed pushdown systems as a tool for analyzing programs with (recursive) procedures, and the model-checking problem for LTL has received special attention. However, all these works impose a strong restriction on the possible valuations of atomic propositions: whether a configuration of the pushdown system satisfies an atomic proposition or not can only depend on the current control state of the pushdown automaton and on its topmost stack symbol. In this paper we consider LTL with regular valuations: the set of configurations satisfying an atomic proposition can be an arbitrary regular language. The model-checking problem is solved via two different techniques, with an eye on efficiency. The resulting algorithms are polynomial in certain measures of the problem which are usually small, but can be exponential in the size of the problem instance. However, we show that this exponential blowup is inevitable. The extension to regular valuations allows to model problems in different areas; for instance, we show an application to the analysis of systems with checkpoints. We claim that our model-checking algorithms provide a general, unifying and efficient framework for solving them.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号