首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multilayer soft lithography was used to prepare a poly(dimethylsiloxane) microfluidic chip that allows for in vivo sampling of amino acid neurotransmitters by low-flow push-pull perfusion. The chip incorporates a pneumatically actuated peristaltic pump to deliver artificial cerebrospinal fluid to a push-pull perfusion probe, pull sample from the probe, perform on-line derivatization with o-phthaldialdehyde, and push derivatized amino acids into the flow-gated injector of a high-speed capillary electrophoresis-laser-induced fluorescence instrument. Peristalsis was achieved by sequential actuation of six, 200 microm wide by 15 microm high control valves that drove fluid through three fluidic channels of equal dimensions. Electropherograms with 100,000 theoretical plates were acquired at approximately 20-s intervals. Relative standard deviations of peak heights were 4% in vitro, and detection limits for the excitatory amino acids were approximately 60 nM. For in vivo measurements, push-pull probes were implanted in the striatum of anesthetized rats and amino acid concentrations were monitored while sampling at 50 nL/min. o-Phosphorylethanolamine, glutamate, aspartate, taurine, glutamine, serine, and glycine were all detected with stable peak heights observed for over 4 h with relative standard deviations of 10% in vivo. Basal concentrations of glutamate were 1.9 +/- 0.6 microM (n = 4) in good agreement with similar methods. Monitoring of dynamic changes of neurotransmitters resulting from 10-min applications of 70 mM K(+) through the push channel of the pump was demonstrated. The combined system allows temporal resolution for multianalyte monitoring of approximately 45 s with spatial resolution 65-fold better than conventional microdialysis probe with 4-mm length. The system demonstrates the feasibility of sampling from a complex microenvironment with transfer to a microfluidic device for on-line analysis.  相似文献   

2.
A coupling between multimode polymer waveguides and microfluidic channels on a polymethylmethacrylate (PMMA) capillary electrophoresis (CE)-chip for optical analytical applications has been successfully realised. This technology allows the integration of polymer optical waveguides together with hermetically sealed fluidic channels. The microchannels and waveguides are made in PMMA by the approved hot-embossing technology. The technology developed for the fabrication of polymer waveguides on the microfluidic chip offers the possibility of great flexibility in the choice of core materials, design and alignment of the polymer waveguides. The integration of polymer waveguides on an analysis chip enables highly spatially resolved optical detection without the large and expensive conventionally used apparatus. The optical properties of the analytical system developed are verified by transmission and propagation loss measurements. The results of measurements prove the suitability of the presented device for optical applications between 440 and 800 nm. This was shown with absorbance measurements of the dye Sulfanilazochromotrop (SPADNS) within 50 microm fluidic channels.  相似文献   

3.
Current nano-LC/MS systems require the use of an enrichment column, a separation column, a nanospray tip, and the fittings needed to connect these parts together. In this paper, we present a microfabricated approach to nano-LC, which integrates these components on a single LC chip, eliminating the need for conventional LC connections. The chip was fabricated by laminating polyimide films with laser-ablated channels, ports, and frit structures. The enrichment and separation columns were packed using conventional reversed-phase chromatography particles. A face-seal rotary valve provided a means for switching between sample loading and separation configurations with minimum dead and delay volumes while allowing high-pressure operation. The LC chip and valve assembly were mounted within a custom electrospray source on an ion-trap mass spectrometer. The overall system performance was demonstrated through reversed-phase gradient separations of tryptic protein digests at flow rates between 100 and 400 nL/min. Microfluidic integration of the nano-LC components enabled separations with subfemtomole detection sensitivity, minimal carryover, and robust and stable electrospray throughout the LC solvent gradient.  相似文献   

4.
倒装芯片技术逐渐成为微电子封装的主流技术之一,而其中的缺陷检测也日益受到关注。文章针对倒装芯片中典型的焊球缺失缺陷开展研究,以倒装芯片振动模型为基础,推导出芯片振动方程,阐述了缺陷对振动的影响以及利用模态分析进行倒装芯片缺陷检测的原理,并结合实际芯片,理论计算出焊球缺失对其固有频率变化的影响,进一步对正常和焊球缺失芯片的固有频率变化进行了仿真分析和实验测量,研究结果验证了理论计算固有频率变化的正确性,表明基于模态分析的方法可用于倒装芯片的缺陷检测研究。  相似文献   

5.
针对高灵敏度、宽响应范围及自动检测三磷酸腺苷(ATP)的需求,设计了一种基于生物发光原理的ATP检测系统.系统采用自动加样技术,在发光反应的同时开始记录光强,使仪表检测自动化,且提高检测灵敏度;在优化光电检测单元设计和减小杂散光及电磁干扰的同时,提高荧光检测效率;通过电路和数据处理算法优化提高仪表检测范围.以浓度为10-15~10-6 M范围内的标准ATP溶液进行了实验,结果表明仪表测量光强与ATP实际浓度相关系数为0.974,检测范围达9个数量级.与市场相关仪器相比,该系统具有自动化测试,性能和灵敏度高、响应范围宽的特点,在ATP测量以及相关领域如细菌测量、毒性测试及卫生状况检测等方面具有广泛的应用前景.  相似文献   

6.
Silicon microchips with immobilized antibodies were used to develop microfluidic enzyme immunoassays using chemiluminescence detection and horseradish peroxidase (HRP) as the enzyme label. Polyclonal anti-atrazine antibodies were coupled to the silicon microchip surface with an overall dimension of 13.1 x 3.2 mm, comprising 42 porous flow channels of 235-microm depth and 25-microm width. Different immobilization protocols based on covalent or noncovalent modification of the silica surface with 3-aminopropyltriethoxysilane (APTES) or 3-glycidoxypropyltrimethoxysilane (GOPS), linear polyethylenimine (LPEI, MW 750,000), or branched polyethylenimine (BPEI, MW 25,000), followed by adsorption or covalent attachment of the antibody, were evaluated to reach the best reusability, stability, and sensitivity of the microfluidic enzyme immunoassay (microFEIA). Adsorption of antibodies on a LPEI-modified silica surface and covalent attachment to physically adsorbed BPEI lead to unstable antibody coatings. Covalent coupling of antibodies via glutaraldehyde (GA) to three different functionalized silica surfaces (APTES-GA, LPEI-GA, and GOPS-BPEI-GA) resulted in antibody coatings that could be completely regenerated using 0.4 M glycine/HCl, pH 2.2. The buffer composition was shown to have a dramatic effect on the assay stability, where the commonly used phosphate buffer saline was proved to be the least suitable choice. The best long-term stability was obtained for the LPEI-GA surface with no loss of antibody activity during one month. The detection limits in the microFEIA for the three different immuno surfaces were 45, 3.8, and 0.80 ng/L (209, 17.7, and 3.7 pM) for APTES-GA, LPEI-GA, and GOPS-BPEI-GA, respectively.  相似文献   

7.
Single-cell gene expression analysis holds great promise for studying diverse biological systems, but methodology to process these precious samples in a reproducible, quantitative, and parallel fashion remains challenging. Here, we utilize microfluidics to isolate picogram and subpicogram mRNA templates, as well as to synthesize cDNA from these templates. We demonstrate single-cell mRNA isolation and cDNA synthesis, provide quantitative calibrations for each step in the process, and measure gene expression in individual cells. The techniques presented here form the foundation for highly parallel single-cell gene expression studies.  相似文献   

8.
Millings or old pavement materials (also known as reclaimed asphalt pavement) are used in pavement base and surface course mostly for rehab and reconstruction processes. Millings can also be used in pavement maintenance such as chip seal. However, it is not known whether chip seal with millings are cheaper than chip seal with virgin chips considering their lifetime performance. In this study, life cycle cost of chip seal with and without millings was determined from data gathered by surveying three transportation Districts in New Mexico. Performance plot over time was used to evaluate the benefit and cost-effectiveness index (EI). For all districts, chip seal with millings has higher EI compared to chip seal with virgin aggregates.  相似文献   

9.
构建一种基于环介导等温扩增(loop-mediated isothermal amplification,LAMP),集细菌在线裂解、核酸提取、目标基因扩增和产物检测一体化的用于病原菌快速检测的集成式微流控芯片。以耐甲氧西林金黄色葡萄球菌(methicillin-resistant staphylococcus,MRSA)为模式菌,以mec A为靶基因,在优化条件下用芯片实现对病原菌的在线检测,完成对101~106cfu MRSA的在线裂解、LAMP扩增和产物测定,采用荧光原位检测可得101~105cfu的检测范围和101cfu的检出限。该微流控LAMP芯片结构简单,操作便捷,可在1 h内实现对MRSA mec A基因的快速检测,具有较高的灵敏度和特异性,为下一步临床生物样本病原菌快速检测微流控芯片系统的构建奠定前期研究基础。  相似文献   

10.
We present a micromachined silicon attenuated total reflection-infrared (ATR-IR) crystal with integrated nanofluidic glass channels which enables infrared spectroscopic studies with only 71 nL sample volume. Because of the short path length through silicon, the system allows IR spectroscopy down to 1200 cm(-1), which covers the typical fingerprint region of most organic compounds. To demonstrate proof-of-principle, the chip was used to study a Knoevenagel condensation reaction between malononitrile and p-anisaldehyde catalyzed by different concentrations of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in solvent acetonitrile. By in situ measurement, it was demonstrated for the first time that at certain concentrations of DBU, reaction intermediates become stabilized, an effect that slows down or even stops the reaction. This is thought to be caused by increased ionic character of the solvent, in which protonated DBU stabilizes the intermediates. This clearly demonstrates that infrared mechanistic studies of chemical reactions are feasible in volumes as little as 71 nL.  相似文献   

11.
兴奋剂检测芯片的设计原理与技术研究   总被引:5,自引:0,他引:5  
介绍了采用生物芯片技术进行兴奋剂检测的理论和实验结果。针对兴奋剂在人体内的作用本质,提出了基于受体结合原理的蛋白质芯片检测策略,建立了受体芯片的制备方法。通过对β肾上腺受体拮抗剂、类固醇同化激素及麻醉镇痛剂的实验检测,验证了该方法的可行性,本检测方法的灵敏度为0.01nM,高于药检要求100倍以上。结果表明,蛋白质芯片不但能区分不同类型的兴奋剂,还可以利用Ki值确定同一类型中的不同违禁药物,为大型赛事或日常训练中兴奋剂检测提供了一种敏感、经济、快捷的初筛工具。  相似文献   

12.
This paper describes microfluidic systems that can be used to investigate multiple chemical or biochemical interactions in a parallel format. These three-dimensional systems are generated by crossing two sets of microfluidic channels, fabricated in two different layers, at right angles. Solutions of the reagents are placed in the channels; in different modes of operation, these solutions can be either flowing or stationary-the latter is important when one set of channels is filled with viscous gels with immobilized reagents. At every crossing, the channels are separated either by a single membrane or by a composite separator comprising a membrane, a microwell, and a second membrane. These components allow diffusive mass transport and minimize convective transport through the crossing. Polycarbonate membranes with 0.1-1-microm vertical pores were used to fabricate the devices. Each crossing of parallel channels serves as an element in which chemical or biochemical interactions can take place; interactions can be detected by monitoring changes in fluorescence and absorbance. These all-organic systems are straightforward to fabricate and to operate and may find applications as portable microanalytical systems and as tools in combinatorial research.  相似文献   

13.
Underfill encapsulation is a technique used to reinforce the solder bumps between the chip and the substrate in flip chip technology. To determine the optimal geometrical parameters and material properties for the package and candidate underfill materials is an important strategy for improving the thermo-mechanical reliability of flip chip packages. In this study, a stress-function-based energy method was developed to evaluate the interfacial peel and shear stress distributions in multilayered packaging structures. The stress functions were expressed in terms of sine and cosine trigonometric series. Simple programming and short CPU time lead to accurate stress distributions. After comparisons with other proposed numerical methods and results, the developed model was then coupled with a Genetic Algorithm to optimize the design of the direct chip attach (DCA) and chip scale package (CSP) in order to diminish the interfacial stresses and the possibility of crack initiation. The results revealed that the maximum peel and shear stress values were productively decreased and their peaks moved toward the center after conducting the optimizations in both cases. Improved geometrical and material parameters of the flip chip package were determined.  相似文献   

14.
The construction of scintillating ceramics is of great technological importance for various fundamental applications, including medical diagnostic, security inspection, resource exploration and particle physics. The chief challenge is the facile and scalable synthesis of scintillating ceramics with the desirable combination of pore-free, reliable mechanical properties and excellent scintillating performance. Here we present a pressureless glass crystallization strategy for the construction of sc...  相似文献   

15.
Molecularly imprinted polymer gel with embedded gold nanoparticle was prepared on a gold substrate of a chip for a surface plasmon resonance (SPR) sensor for fabricating an SPR sensor sensitive to a low molecular weight analyte. The sensing is based on swelling of the imprinted polymer gel that is triggered by an analyte binding event within the polymer gel. The swelling causes greater distance between the gold nanoparticles and substrate, shifting a dip of an SPR curve to a higher SPR angle. The polymer synthesis was conducted by radical polymerization of a mixture of acrylic acid, N-isopropylacrylamide, N,N'-methylenebisacrylamide, and gold nanoparticles in the presence of dopamine as model template species on a sensor chip coated with allyl mercaptan. The modified sensor chip showed an increasing SPR angle in response to dopamine concentration, which agrees with the expected sensing mechanism. Furthermore, the gold nanoparticles were shown to be effective for enhancing the signal intensity (the change of SPR angle) by comparison with a sensor chip immobilizing no gold nanoparticles. The analyte binding process and the consequent swelling appeared to be reversible, allowing one the repeated use of the presented sensor chip.  相似文献   

16.
A plasmonic biosensor chip of silver-coated PMMA grating with a zinc oxide (ZnO) overlayer is fabricated for surface plasmon field-enhanced fluorescence (SPF) detection of Cy5-labeled green fluorescent protein (GFP). A bispecific antibody (anti-GFP x anti-ZnO antibody) prepared in our lab is densely immobilized on the sensor chip for GFP detection. The sensitivity of the plasmonic biosensors is improved due to densely packed antibodies and ZnO-coating that suppresses nonspecific protein adsorption and fluorescent quenching. With the ZnO-coated plasmonic chip, Cy5-labeled GFP of 10 pM can be detected through SPF. This sensitivity is 100 higher compared with the normal fluorescent detection on a ZnO-coated glass slide.  相似文献   

17.
罗怡  王晓东  杨帆 《高技术通讯》2007,17(10):1050-1055
采用热压方法制备了环烯烃聚合物(COP)微流控芯片.考虑到温度对微结构热压成形的质量影响最大,基于材料的粘弹性特性,通过变温准蠕变实验获得了热压参考温度Tr.实验证明,在该温度下热压成形,宽度和深度方向的复制精度分别达到了97.6%和94.3%.为了研究制备的COP微流控芯片的性能,将其和同一模具制备的PMMA微流控芯片进行了性能对比实验.通过背景荧光实验、电泳实验和DNA分析实验三方面的研究表明,与PMMA芯片相比,COP芯片背景荧光低,电泳效率高,检测重现性相对标准偏差小于2.5%,适用于生化分析.  相似文献   

18.
19.
High reliability multilayer ceramic chip capacitors are necessary for use in surface mounting processes which are more mechanically and thermally severe than the traditional through-hole processes. Moreover, in specific environments, even a small defect can be considered as catastrophic for the working of the electronic circuit or even of the entire system. In order to look for the failures—intrinsic latent defects and those caused by SMT soldering processes—appearing in these components, many techniques of analysis can be used. With this present work, we focus on one technique based on the principle of electromechanical resonances existing in piezoelectric materials under a d.c. bias field. The free correlation between the impedance measurement of the chip under a sufficient voltage allows us to highlight some conclusions concerning the behaviour, the nature of the defects and the long-term reliability of ceramic chip capacitors. This method has the advantage of being non-destructive, rapid, efficient and low-cost.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号