首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 163 毫秒
1.
研究舰载防空导弹制导精度优化问题.拦截大航路反舰导弹会造成弹目交会角较大降低引信频谱识别的启动概率而不利于引战配合,过去的终端角度约束制导律在逆轨拦截时容易造成末段过载过大甚至发散,使导弹末段可用过载不足而脱靶.为解决上述问题,提出导弹圆周运动过载稳定,利用几何方法设计了一种具有终端角度约束的圆周中制导律,根据圆的几何特性精确计算出了中末制导预测交班点和中制导起始时刻的最优到位角.通过仿真,验证了上述制导方法在过载平稳性、收敛性以及脱靶量等方面的性能优于一般的终端角度约束制导律.证明上述方法解决了终端角度约束造成的末段过载过大甚至发散的问题,有效提高了对大航路反舰导弹的逆轨拦截精度.  相似文献   

2.
本文以多枚空空导弹逆轨拦截高速运动目标为背景,提出了一种以协同探测为终端约束的分布式协同中制导律.通过对误差源和误差传递链路进行分析,建立了中末交班概率计算模型,基于虚拟导引点研究了协同视场拼接方法.在视线法向,针对位置协同和角度协同等约束条件,设计了基于高斯伪谱法的最优制导律.在视线方向,基于二阶多智能体一致性理论,设计了分布式时间协同制导律,构造李雅普诺夫泛函证明了该方法可使系统在有限时间达到稳定,并推导出了一致性时间上界.仿真结果表明该制导律可使多弹以各自期望的视线角同时到达指定交班区域,实现视场拼接、协同探测的需求,有效提高了中末交班概率.  相似文献   

3.
针对多枚导弹在三维空间从不同初始位置同时拦截机动目标的问题,设计了一种带视线角约束的有限时间协同制导律.首先,给出三维空间的导弹–目标相对运动方程并建立了考虑视线角约束的多弹协同制导模型.其次,对视线纵向及法向方向分别设计了相应的协同制导律.其中在视线方向基于多智能体有限时间一致性理论设计了协同制导律,保证各拦截弹能够同时击中目标;基于一种新型的固定时间非奇异终端滑模控制方法设计了视线法向上的角度约束制导律,使各拦截弹的视线角能够在固定时间内收敛至期望值,实现空间上的协同;同时,构造了扩张状态观测器估计目标加速度.最后,对三枚导弹同时拦截同一机动目标的情况进行仿真对比,验证了本文所提出协同制导律的有效性.  相似文献   

4.
针对拦截机动目标的末制导问题,设计一种带攻击角度约束的末制导律.该制导律构造一种新型的固定时间收敛非奇异终端滑模面,能够在解决终端滑模面奇异性问题的同时使得滑模面、弹目视线角和弹目视线角速率在固定时间内收敛,保证收敛时间的上界是独立于弹目初始条件,可以被预先设定的.与传统的固定时间收敛控制相比,该制导律通过调节滑膜面和弹目视线角误差的趋近律指数使得制导系统收敛速率更快.同时,针对目标机动引起的未知扰动,引入一种扩张状态观测器进行估计,能够增强制导系统的鲁棒性,避免震颤现象的发生.最后,通过仿真实验验证所提出制导律能够以不同的攻击角度对机动目标进行有效拦截,且与其他制导律相比,所提出的制导律使得制导系统收敛更快,导弹拦截时间更短,拦截精度更高.  相似文献   

5.
弹载合成孔径雷达(SAR)的方位成像能力受飞行导弹的观测角影响,其末制导段采用前侧视工作方式。因此,必需合理设计制导律使前侧视条件成立。为了保证末制导段弹目间具有合适的夹角,采用变结构控制方法设计了一种固定前置角制导律,该制导律能够解决合成孔径雷达导引头对于前置角约束的问题。在制导律设计过程中,首先建立了弹目相对运动关系模型和具有终端角度约束时的视线角变化模型;在此基础上采用变结构控制的方法设计了固定前置角制导律;进而,对该固定前置角导引律进行了性能分析,得出了其一般攻击特性;最后,通过弹道仿真论证了其正确性与有效性。  相似文献   

6.
多导弹协同攻击是未来导弹技术发展的重要方向之一;研究了多导弹协同攻击问题;首先建立了导弹与目标的相对运动方程,然后对多导弹协同攻击问题以及hp-自适应伪谱法求解最优控制问题的基本原理进行了描述;将hp-自适应伪谱法应用到多导弹协同攻击的研究中,设计了一种基于伪谱法的多导弹协同攻击制导策略,并通过仿真算例对其进行了验证和分析;仿真结果表明:设计的多导弹协同攻击制导策略能够同时兼顾时间约束和角度约束,实现对固定目标的多导弹协同饱和攻击,具有一定的应用价值。  相似文献   

7.
郭建国  周军 《计算机仿真》2009,26(9):41-43,210
针对导弹和目标相对运动学关系,利用许瓦兹不等式,提出了一种新的基于制导品质最优的末制导律。在导弹和目标的三维相对运动关系的基础上,忽略三维制导平面的耦合因素,同时考虑二阶的弹体响应环节,建立了导弹制导系统的数学模型。基于在有限时间内零化弹目相对距离和零化弹目视线角速率,以及导弹机动能量最小的优化制导品质的思想,利用许瓦兹不等式推导出一种用解析形式表示的最优末制导律。这种最优制导律通过估算剩余时间,实现对目标的有效拦截。最后通过数字仿真,验证了在脱靶量、弹目视线角速率和机动能量的制导品质方面,所提出的最优制导律要优于一般的比例制导律。  相似文献   

8.
李晓宝  赵国荣  刘帅  温家鑫 《控制与决策》2020,35(10):2336-2344
针对导弹拦截机动目标的末制导问题,基于有限时间滑模控制理论设计一种带有攻击角度和导弹视场角约束的制导律.首先,将导弹末制导问题转化为带有状态约束的制导系统稳定问题,设计一种新型的非奇异终端滑模面和时变的障碍Lyapunov函数,给出一种终端滑模制导律的设计方法,并针对目标机动的不确定性设计一种对目标机动上界的自适应估计;然后,通过稳定性理论证明制导系统的状态变量最终是有限时间收敛的,并且结合时变的障碍Lyapunov函数和滑模面的设计特性证明在末制导过程中视场角约束条件始终不会被违背,相比于现有的考虑视场角约束的制导律,该制导律不存在指令转换,能够加快制导系统收敛速率,增强制导系统的抗干扰能力;最后,通过仿真实验验证所提出制导方法的有效性.  相似文献   

9.
研究了一种基于Bézier曲线的碰撞角约束的制导律.通过模型转化将制导指令设计的问题转化为二次Bézier曲线形式的航迹角设计问题.首先,利用Bézier曲线的性质设计了导弹速度大小不变的制导律;然后进一步对导弹速度时变的末端角度约束的制导律进行了研究,同时对导弹速度时变情形下的剩余飞行时间进行了估计;最后通过不同情况下的数值仿真,验证了所提出的制导律的有效性.  相似文献   

10.
由于传统的制导律是以脱靶量最小作为终端约束,未考虑末端落角的约束.针对制导武器末端落角约束的要求,引入了带落角约束的最优制导律,通过对多种初始高度及落角约束下的弹道进行仿真分析,验证了上述制导律的可行性.为了提高垂直攻击弹道末端制导精度,提出了增加初始高度、加入重力补偿、增大初始弹道倾角的改进方法.通过对三种改进方法的仿真分析,检验了制导系统提高末端落角精度及减小脱靶量的有效性,并对三种改进方法的应用性进行了对比分析,为导弹末制导精度优化提供了依据.  相似文献   

11.
研究优化制导系统性能,攻击具有终端角度约束地面目标的制导精度问题,存在测量误差的影响。为了提高精确制导律,提出一种考虑信噪比影响的H"非线性末制导律。以导弹与目标在纵向平面内的二维相对非线性运动为研究对象,建立弹目运动学模型,考虑信噪比的影响,以攻击末端姿态角度误差及控制能量最小为性能指标,基于准平行准则根据H∞理论设计鲁棒末制导律,并用Lyapunov稳定性理论严格证明了制导系统的全局渐近稳定性。最后根据制导精度及角约束条件给出量测系统测量信号的信噪比进行仿真,结果表明,设计的末制导律满足终端角度约束的要求,并提高了制导精度,为系统提供了依据。  相似文献   

12.
针对某些导弹要求限制末端攻击时间的作战要求,本文提出一种带末端攻击时间约束的新型制导律。所提出的制导律是通过线性最优控制方法的解而得到的,该制导律是比例导引律和攻击时间误差反馈的组合,此攻击时间误差有别于通过比例导引律所设定的攻击时间。本文用到飞行时间估算方法来完善所提出的制导律。所得制导律形式简单、实用。数字仿真结果证明所提出的制导律能够导引多枚导弹在期望的攻击时间同时命中固定目标。  相似文献   

13.
曾祥鑫  崔乃刚  郭继峰 《机器人》2018,40(3):385-392
针对空间机器人运动过程中基座姿态产生较大扰动的问题,基于hp自适应高斯伪谱法提出了一种以基座所受反作用力矩最小为目标函数的空间机器人路径规划方法.首先,综合考虑空间机器人运动过程中存在的关节角度约束、关节角速度约束、控制力矩约束及初始状态和终端状态约束等约束条件,将空间机器人路径规划问题看成满足一系列约束条件和边界条件并实现特定性能指标最优的最优控制问题.其次,结合hp自适应高斯伪谱法(hp-AGPM)与非线性规划技术,求解带有边界约束和路径约束的优化控制问题,得到满足约束且性能指标最优的空间机器人运动轨迹.最后,以平面2自由度空间机械臂为例对所设计方法进行仿真验证,并与其他伪谱法进行对比分析.仿真结果表明:本文算法能在10.6 s的时间内规划出满足各约束条件且容许偏差低于10-6的最优运动轨迹,并且在计算速度和配点数量上都优于其他伪谱法.  相似文献   

14.

A sliding mode guidance law with dynamic delay and impact angle constraints is designed for the relative motion between the missile and the target in the intercepting plane. First of all, the missile’s first order dynamic delay is involved into the system model to design the guidance law based on sliding mode variable dynamic method. Secondly, the target’s maneuvering is taken as the system disturbance, and a non-homogeneous disturbance observer is applied to estimate such maneuvering in finite time rapidly, which, through dynamic compensation, realizes the missiles precision attack to targets of different maneuvering at a desired line-of-sight (LOS) angle. Finally, numerical simulations are performed to demonstrate the effectiveness of the designed guidance law.

  相似文献   

15.
考虑导弹自动驾驶仪动态特性的带攻击角度约束制导律   总被引:1,自引:0,他引:1  
针对打击机动目标时带攻击角度约束的制导问题,采用扩张状态观测器和动态面控制方法设计一种考虑自动驾驶仪动态特性的制导律.考虑期望视线角的变化率正比于未知的目标加速度,采用扩张状态观测器对未知目标加速度进行估计.为了避免奇异问题,并克服非匹配不确定项对系统性能的影响,采用非奇异终端滑模和动态面控制方法进行制导律设计.与传统的将目标加速度设为零的制导律相比较,仿真结果表明所提出的制导律具有良好的制导性能.  相似文献   

16.
In order to improve the precision of guidance for the missile intercepting maneuvering targets, this paper proposes a sliding mode guidance law with impact angle constraints based on the equation of the relative motion of the missile and the target in a 2D plane. Two finite-time convergent guidance laws are proposed based on the nonsingular terminal sliding mode, while, two exponential convergent guidance laws involving dynamic delay are developed through applying the higher-order nonsingular terminal sliding mode. The simulations denote that, in all the four scenarios of the target’s maneuvering, the guidance laws are able to inhibit the chattering phenomenon of the sliding modes effectively; and from an expected aspect angle, the missiles could attack the targets with high precision and fast speed.  相似文献   

17.
This investigation addresses a nonlinear terminal guidance/autopilot controller with pulse‐type control inputs for intercepting a theater ballistic missile in the exoatmospheric region. Appropriate initial conditions on the terminal phase are assumed to apply after the end of the midcourse operation. Accordingly, the terminal controller seeks to minimize the distance between the commanded missile and the target missile to ensure a hit‐to‐kill interception. In particular, a 3D terminal guidance law is initially developed to eliminate the so‐called “sliding velocity, ” thus, constraining the relative motion between the missile and the target along the line of sight. Sliding mode control is adopted to design stable pulse‐type control systems. Then, a quaternion‐based attitude controller is used to orient appropriately the commanded missile, taking into account the fact that the missile is a rigid body, to realize interceptability. The stability of the overall integrated terminal guidance/autopilot system is then analyzed thoroughly, based on Lyapunov stability theory. Finally, extensive simulations are conducted to verify the validity and effectiveness of the integrated controller with the pulse type inputs developed herein. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
This paper considers the terminal guidance problem of missiles intercepting maneuvering targets with impact angle constraints. Based on an advanced nonsingular fast terminal sliding mode control scheme and adaptive control, an adaptive nonsingular fast terminal sliding mode guidance law is proposed in the presence of the target acceleration as an unknown bounded external disturbance. In the design procedure, an adaptive law is presented to estimate the unknown upper bound of the external disturbance. Theoretical analysis shows that the proposed guidance law can guarantee the finite-time convergence in both the reaching phase and the sliding phase by applying a Lyapunov-based approach. Numerical simulations are presented to demonstrate the effectiveness of the proposed guidance law. Although the proposed guidance law is developed for the constant speed missiles, by the extensive numerical simulations with a realistic missile model, the performance is shown to be equally good for the varying speed missiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号