首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
马勇  郭殿武 《信息技术》2006,30(8):63-66
提出了一种基于HHT和支持向量机的实际数字调制信号识别算法。首先介绍了HHT方法的基本原理,对三种数字调制信号进行分析,提出用于识别实际FSK,PSK和QAM信号的特征参数,然后运用支持向量机算法分类三种数字调制信号,仿真结果表明,在信噪比10dB时,识别率达95%以上。  相似文献   

2.
提出一种基于支持向量机的实际调制信号自动识别新方法。利用支持向量机把分类特征向量映射到一个高维空间,并在高维空间中构造最优分类超平面以实现信号分类。计算机仿真结果表明,该方法对实际采集的信号具有很好的分类性能。  相似文献   

3.
基于粒子群支持向量机的通信信号调制识别算法   总被引:1,自引:0,他引:1  
王玉娥  张天骐  白娟  包锐 《电视技术》2011,35(23):106-110
为了解决大部分通信信号调制识别方法计算量大和分类器训练困难问题,提出一种基于粒子群(PSO)支持向量机(SVM)的调制识别方法.将小波理论与调制信号的瞬时特征、高阶累积量以及分形理论相结合,得到一种混合模式特征向量,并利用粒子群支持向量机对2ASK,4ASK,2PSK,4PSK,8PSK,2FSK,4FSK,8FSK,...  相似文献   

4.
石曼银 《电子测试》2013,(8X):24-25
在传统的手势识别中,多数是通过人工神经网络,隐Markov模型和几何边缘特征等算法。以一种改进的SVM统计向量机算法对手势特征集进行精确识别,通过进行适当函数子集的选择,使判别函数的识别率达到最优,得到一个具有推广泛化能力和最优分类能力学习机,该方法能够保证特征子集的划分的识别效果等价于对整个样本集。通过Kinect进行手势识别测试,结果表明基于改进的SVM向量机手势识别算法具有较好的精确性和准确度。  相似文献   

5.
任孝锋 《激光杂志》2020,41(7):162-166
由于分布式光纤传感器存在灵敏度高、监测范围广、抗干扰性高的优势,所以被大量使用在边境、电场等周界安防地区。提出一种基于光纤入侵信号检测的安防系统信号分级识别算法,首先采用光纤周界安防入侵信号检测算法,检测光纤周界安防系统入侵振动信号,然后基于检测的光纤入侵振动信号,采用基于应激反应过程的光纤入侵振动信号分级识别算法,实现安防系统信号分级识别。研究结果表明:所提算法对敲击振动信号(入侵振动信号)的分级识别精度均值是0.98,对人员攀爬振动信号(入侵振动信号)、暴雨振动信号(非入侵振动信号)进行振动信号属性识别时,平均识别误差均是0.01,对持续性入侵与非持续性入侵识别精度高于98%,具有较高的普适性。  相似文献   

6.
为降低光纤周界安防信号中噪声对分类结果的影响,提升信号分类的准确率和运行效率,提出一种融合了相关变分模态分解(Correlation Variational Mode Decomposition, CVMD)、蜣螂算法(Dung Beetle Optimizer, DBO)和支持向量机(Support Vector Machine, SVM)的分类方法。利用CVMD去除原始信号中的噪声分量,并提取去噪后信号的能量、能量熵和峭度作为特征向量。采用DBO算法优化SVM,得到最佳惩罚因子和核函数参数,并构建DBO-SVM分类模型。搭建了基于相位敏感光时域反射(Φ-OTDR)技术的周界安防系统,采集了攀爬、敲击、踩踏和无入侵四类信号。实验结果表明,CVMD-DBO-SVM的分类准确率相比CVMD-PSO-SVM和CVMD-GA-SVM更高,达到了98.75%,同时运行时间更短,综合性能最优。  相似文献   

7.
利用多模态智能技术识别情绪已成为业界研究热点。利用摄像头采集到的人脸图像信息传入已经训练好的模型之中,融合传感设备采集到的用户皮肤电反应和心电信息,提出采用支持向量机分类得到情绪所属的二维情绪模型位置,从而得出用户的准确情绪状态,提高了整体情绪识别、分类的准确率。算法对于人类基本情绪的识别准确率达到77.85%,高于单一模态识别的准确率,为多模态情绪识别研究提供了一种新的思路和探索。  相似文献   

8.
余华童馨 《电子器件》2022,45(5):1100-1104
提出一种基于粒子群优化算法的支持向量机网络,并把它应用到语音情感识别系统中。依据情感的维度空间模型,研究分析情感语音数据的韵律特征与音质特征。利用粒子群优化算法(PSO)训练网络的超参数以优化支持向量机模型,可快速地实现网络的收敛。最后在实验中比较线性核函数SVM、径向基核函数SVM与粒子群优化径向基SVM分别用于语音情感识别的识别率,结果显示粒子群优化径向基核SVM模型用于语音情感识别能获得明显的识别性能的提升。  相似文献   

9.
提出了一种基于支持向量机实现C波段无线电异常信号类型识别的方法.首先,通过对C波段实测异常信号进行统计分析,提取被识别信号的有效频域特征.其次,基于支持向量机分类器结构简单、泛化能力强、可获得全局最优等特点,构建了基于径向基核函数的支持向量机信号识别系统,取得了较高的识别率.最后,Matlab实验结果表明该方法信号识别效率高,在同等条件下优于神经网络.  相似文献   

10.
杨剑利  孙霞  赵攀 《激光杂志》2024,(3):199-203
光通讯作为无线通信领域的新兴通讯手段具有广阔的研究前景,其系统信号感知方法的研究是光通讯领域的重点问题。现阶段光通信的信号感知方法存在识别效果不佳、受噪声干扰大的问题,为了解决方法中存在的问题,提出基于区块链技术的光通信系统信号智能感知方法。首先,使用结合重构方法的傅里叶变换采集光通讯信号;其次,基于区块链技术对采集到的调制信号实行分布式存储与读取;最后,基于支持向量机方法完成光通信系统信号的智能感知。实验结果表明,所提方法的光通讯系统信号感知识别正确率更高,受噪声影响更小,具有较好的实际应用价值。  相似文献   

11.
为了提高情感识别的正确率,针对单一语音信号特征和表面肌电信号特征存在的局限性,提出了一种集成语音信号特征和表面肌电信号特征的情感自动识别模型.首先对语音信号和表面肌电信号进行预处理,并分别提取相关的语音信号和表面肌电信号特征,然后采用支持向量机对语音信号和表面肌电信号特征进行学习,分别建立相应的情感分类器,得到相应的识别结果,最后将识别结果分别输入到支持向量机确定两种特征的权重系数,从而得到最终的情感识别结果.两个标准语情感数据库的仿真结果表明,相对于其它情感识别模型,本文模型大幅提高了情感识别的正确率,人机交互情感识别系统提供了一种新的研究工具.  相似文献   

12.
随着计算机技术的发展,人们对和谐人机交互的要求不断提高,这就要求计算机能理解说话人的情感信息,即能进行语音情感识别。本文提出了一种基于支持向量机(SVM)的语音情感识别方法,主要对人类的6种基本情感:高兴、惊奇、愤怒、悲伤、恐惧、平静进行研究。首先对自建语音情感数据库的情感语句提取特征,然后运用序列前向选择(SFS)算...  相似文献   

13.
在实际电子侦察过程中,由于各种原因,侦收到的不同类型信号数量相差很大,类别之间严重不平衡,常规方法在这种数据集下训练得到的分类器不能有效识别少数类.针对这一问题,首先采用栈式自编码器对中频数据进行降维和特征提取;然后在降维后的特征空间内通过多种过采样方法生成新的少数类样本,使数据集重新平衡,并利用再平衡后的数据集训练支...  相似文献   

14.
设计了光纤围栏系统的系统组成,并对系统的工作原理和围栏主机的工作流程进行了重点分析.设计了围栏主机中基于支持向量机(SVM)的模式识别模块,介绍了在二类分类和多类分类情况下的相关算法,给出了在Labview中的实现结果.  相似文献   

15.
针对低信噪比下雷达信号识别准确率较低的问题,提出了一种基于时频图像和高次频谱特征联合的雷达信号识别算法。该算法首先对信号采用Choi-Williams分布(Choi-Williams distribution,CWD)变换获取时频图像,接着对时频图预处理并用灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取纹理特征;然后利用对称Holder系数提取信号的高次频谱特征;再将纹理特征和高次频谱特征构成一组联合特征向量,最后通过支持向量机(support vector machine,SVM)实现雷达信号的分类识别。通过对8种典型雷达信号进行实验,结果表明本算法在信噪比为-8 dB时,不同信号的识别准确率能达到90%以上。  相似文献   

16.
针对马赫-曾德尔光纤周界系统振动信号扰动信 息提取及识别中的问题,提出了一种 基于局部特征尺度分解(LCD)和改进概率神经网络(PNN)的识别方法。首先,采用LCD将振动 信号分解成一系列内禀尺度分量(ISC),再将分解得到的ISC分量每连续3阶一组进行独立成 分分析(ICA),提取扰动信息。其次,提取振动信号的峭度、排列熵、瞬时幅度标准差和瞬 时频率标准差构造具有准确描述能力的特征向量。最后,采用经模糊C均值聚类(FCM)优化后 的PNN对振动信号进行识别分类。利用六种振动信号实验数据进行验证。结果表明,该方法 能够高效准确的识别六种振动信号,平均识别率达到97.17%,识别时 间为0.78 s。该方法在 有效信息提取和振动信号识别方面明显优于传统的LCD算法和PNN算法,具有实际应用价值。  相似文献   

17.
为了克服小波变换在二维空间分析的缺陷,提出了基于快速离散曲波(Curvelet)变换的虹膜识别改进算法.利用能有效捕捉图像边缘信息的Curvelet变换对虹膜图像进行分解,提取低频子带系数矩阵的均值方差和高频子带能量,然后根据不同子带特征的分类能力不同,对各子带特征的离散度进行加权,为分类能力较强的特征向量赋予较大权值,构成虹膜图像的特征向量.利用最优二叉树多类模糊最小二乘支持向量机分类器进行分类与识别.仿真实验结果表明,该算法具有较高的识别性能,具有可行性.  相似文献   

18.
提出一种基于互补经验模态分解(CEEMD)奇异值熵结合多核支持向量机(SVM)的入侵信号特征提取与识别方法。首先,采用CEEMD方法对入侵信号进行分解得到若干个本征模态函数(IMF);其次,再对IMF分量进行奇异值分解,计算其奇异值熵;然后,根据奇异值熵筛选出有用IMF分量,构建特征向量;最后,采用多核支持向量机识别入侵信号。采用实际采集的攀爬,敲击,汽车,风等场外入侵信号进行了实验验证,结果表明:CEEMD方法有效解决了EEMD的残留白噪声问题,多核SVM比单核SVM具有更好的识别率,攀爬入侵信号识别率达到95%。  相似文献   

19.
基于Kinect和金字塔特征的行为识别算法   总被引:2,自引:1,他引:2  
提出了一种基于Kinect和金字塔特征的行为识别算法。在算法中,Kinect不仅能够获得RGB信息,还能获得与RGB信息对应的深度信息;而金字塔特征不仅描述了人体行为的全局形状和局部细节信息,而且还描述了人体行为的空间信息。通过不同核函数的支持向量机(SVM)分类器在具有挑战性的DHA数据集的试验结果表明,金字塔特征在RGB和深度图上都能获得令人满意的性能,且当深度特征和RGB特征融合时,其性能获得了进一步的提高,识别率达到96.2%,远高于一些具有代表性的行为描述子。  相似文献   

20.
基于SVM的入侵检测系统中特征权重优选方法综述   总被引:1,自引:0,他引:1  
基于统计学习理论的支持向量机有较好的泛化能力,然而当样本含有与该问题不完全相关甚至完全无关的特征时,会使得各个特征对问题的相关程度差异很大,为了提高分类的正确率,对各个特征进行加权尤为重要。在入侵检测系统中,网络中的特征对分类结果的影响程度也是不同的,本文列举了对这些特征进行加权的几种方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号