首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
<正>日前,中国地质科学院郑州矿产综合利用研究所科研人员对青海省某大型金红石矿进行选矿工艺试验研究,取得重要突破。科研人员经过大量的磁选、重选、浮选和电选探索试验,最终确定采用"重选—浮选—磁选—电选"工艺流程综合回收原矿中的金红石、石榴子石、绿辉石等矿物,并得到优异指标:金红石产品产率为0.82%、二氧化钛含量为92.44%、金红石矿物回收率为56.29%;石榴子石产品产率为56.00%、石榴子石含量为94%、石榴子石回收率为90.29%;绿辉石产品产率为17.00%、绿辉石含量为94.5%、绿辉石回收率为72.82%。若以此技术工艺进行产业化开发,以2 000 t/d规模建厂为例,年效  相似文献   

2.
某榴辉岩的综合利用   总被引:1,自引:0,他引:1  
从石榴子石和绿辉石含量占82%以上的某榴辉岩中选收金红石,因伴生矿物和金红石的物理性质相近,使选别变得更加复杂和困难。本研究着重探讨了各类工艺流程对该榴辉岩矿石选别的适应性和经济技术指标。从中筛选出磁—重—磁流程进行扩大试验。试验表明,该工艺流程稳定、可靠,并可综合回收金红石、石榴子石、绿辉石和磷灰石四种产品,质量较好,大大地提高了矿床的经济价值。  相似文献   

3.
通过光学显微镜、多元素分析分析法、电子探针、X射线粉体衍射仪等手段,对青海榴辉岩型金红石矿的矿物学开展了详细的研究,查明了该矿主要由Fe、Al、Mg、K、Na、Mn、Si、S、O等元素组成;查明了该矿中的矿物主要是由铁铝榴石、绿辉石、角闪石、绿泥石和金红石等矿物组成,其中石榴子石含量为56.5%,绿辉石含量为24.2%;查明了矿石的结构构造,并进行了主要矿物工艺矿物粒度测定。研究结果表明,矿石中钛主要以金红石的形式存在,嵌布粒度为中细粒嵌布,被石榴子石和绿辉石包裹,造成金红石选矿回收率较低,但石榴子石和绿辉石颗粒较粗,且大部分金红石与石榴子石和绿辉石之间的接触较为平直,有利于金红石的单体解离,选矿回收难度不大。该工艺矿物学研究为青海榴辉岩型金红石矿的选冶工艺及其综合利用提供了重要的参考依据。  相似文献   

4.
湖北枣阳金红石矿选矿工艺研究   总被引:2,自引:0,他引:2       下载免费PDF全文
摘要:湖北枣阳金红石矿因其矿石性质复杂,嵌布粒度粗细不均,长期以来选矿回收率在50%左右,指标较低。通过对该金红石矿石性质的研究,采用脱泥—浮选-磁选原则流程,使用改性活化剂PX进行活化,联合使用选择性较好的捕收剂S.P.A和捕收能力强的脂肪醇O.C.T进行捕收,最终可获得含TTiO2为92.38%,金红石TiO2为89.38%的精矿产品,回收率达到70%以上,指标较好。根据物质组分的研究,矿石中还含有少量石榴子石,对其采用分级摇床工艺进行综合回收,可获得品位为93.3%石榴子石的精矿产品。   相似文献   

5.
某榴辉岩型金红石矿粗选试验研究   总被引:2,自引:0,他引:2  
某榴辉岩型金红石矿主要有用矿物为金红石,可综合利用矿物为石榴石和绿辉石。原矿Ti O2品位2.26%,石榴石矿物含量为34.35%,绿辉石矿物含量为31.15%。根据原矿性质,采用"磨矿-分级-重选-磁选-电选"工艺流程,可获得产率20.65%,Ti O2品位为6.13%,总Ti O2回收率为56.15%(其中金红石中Ti O2回收率为93.08%)的金红石粗精矿;产率26.05%,矿物含量大于90%,回收率为70%的石榴石精矿;产率26.06%,矿物含量大于85%,回收率为70%的绿辉石精矿。综合回收利用石榴石和绿辉石将显著提高该矿石的经济价值。  相似文献   

6.
根据矿物特点,对某铜钼尾矿中的石榴子石进行了选矿试验研究。采用重选可获得石榴子石含量为92.00%,矿物回收率为43.70%的石榴子石精矿,磁选可获得石榴子石含量为84.00%、回收率为85.38%的石榴子石精矿。有效回收了石榴子石,减少了尾矿排放。  相似文献   

7.
对国外某含铁54.09%、二氧化钛8.10%、二氧化锆0.33%、金红石0.057%的铁砂矿样品进行综合利用试验研究。最终采用弱磁选-重选-强磁选-电选的原则工艺流程,获得了全铁品位60.20%、全铁回收率85.58%的钛磁铁精矿,全铁品位51.69%、全铁回收率11.04%的钛赤铁矿精矿,二氧化锆品位60.04%、回收率77.53%的锆英石精矿以及二氧化钛品位85.58%、金红石回收率59.06%的金红石精矿。  相似文献   

8.
为实现不同矿物学基因特性榴辉岩矿中多种有用矿物的高效综合回收,确定选矿工艺流程及预测分选指标,对江苏东海、山东日照及青海乌兰的榴辉岩矿进行了工艺矿物学研究及选矿试验评价。三地的榴辉岩矿可分成 3 个类型,即高磷高硫高钛粗粒型榴辉岩矿(江苏东海)、低磷高硫低钛粗粒型榴辉岩矿(山东日照)及高磷低硫低钛细粒型榴辉岩矿(青海乌兰)。原矿中以金红石形式存在的二氧化钛含量决定了金红石精矿富集的难易程度;杂质磷、硫的含量决定了金红石除杂应选用的工艺流程(反浮选、电选或酸浸);主要有用矿物的粒度大小决定了是否需要采用分级分选工艺和能否获得粗粒级精矿产品。金红石单矿物纯度、与其他矿物的嵌布关系是影响其选矿难易程度的主要因素;石榴子石和绿辉石的原生粒度、矿物内部碎裂情况是决定能否获得粗粒级石榴子石和绿辉石精矿的关键因素;硫、磷杂质的含量及赋存状态是影响金红石除杂工艺的决定性因素。  相似文献   

9.
某难选金红石矿选矿试验研究   总被引:4,自引:2,他引:2  
某金红石矿品位较低,嵌布粒度细,属难选微细粒金红石矿。本文采用浮选抛尾作为金红石选别的预选作业,可一次性抛尾72.27%;抛尾后的粗精矿再采用重选、再磨酸浸、浮选的工艺流程,获得了含TiO290.28%、回收率为47.37%的金红石精矿。  相似文献   

10.
在研究刘岗金红石矿区地质特征,金红石富矿体赋存特征,金红石的赋存状态、嵌布特征及粒度变化特征的基础上,采用新的选矿工艺对金红石矿进行了选矿试验。区内金红石富矿体赋存在左老庄组一段上部,含矿岩石主要是黑云角闪片岩和黑云斜长角闪片岩。金红石多呈半自形柱状、短柱状、粒状嵌布在角闪石、斜长石等脉石矿物之间。采用磨矿擦洗—重选—磁选—重选—微生物选矿工艺流程,获得最终精矿指标为:品位(RTiO2)91.07%,回收率(RTiO2)70.55%。微生物提纯金红石新方法的深入研究可作为开发利用南召—泌阳金红石矿带金红石矿的突破口。  相似文献   

11.
针对甘肃某含Ti O213.38%、TFe 21.12%的钛铁矿,进行了系统选矿试验研究。试验结果表明,在磨矿条件下,采用重选—磁选—电选联合流程,可获得钛精矿产率13.35%、Ti O2品位45.97%、回收率45.46%的较好试验指标。该试验研究为合理开发此类钛铁矿提供技术思路。  相似文献   

12.
河南方城金红石矿选矿试验研究   总被引:11,自引:3,他引:11  
通过重选、磁选、酸洗等选矿试验研究 ,确定了重选—磁选—酸洗再重选—电选联合工艺流程。获得金红石精矿 1品位 Ti O2 92 .16 % ,精矿 2品位 Ti O2 80 .4 4% ,回收率分别为 6 5 .2 6 %、10 .0 1% ,选矿总回收率为 75 .2 7%的较好选矿指标  相似文献   

13.
矾山磷矿尾矿回收铁试验研究   总被引:2,自引:0,他引:2  
介绍了矾山磷矿磁选尾矿的矿物组成、铁的赋存状态、矿物嵌布特征以及用重选、重磁联合流程、磁选分别对其进行回收铁的试验研究情况。用磁选法粗选并进行粗精矿再磨再选,可获得含铁64.19%、回收率5.63%的铁精矿。  相似文献   

14.
磁流体静力分选机理研究   总被引:1,自引:0,他引:1  
张侃  蒋荣立  种亚岗 《选煤技术》2011,(2):10-13,82
阐述了磁流体静力分选技术的发展状况,通过细粒物料的分选试验,表明:磁流体静力分选可以在一个分选槽中,通过改变电压和电流实现多密度分选,其分选效率可以达到95%左右。文章通过试验分析,对磁流体静力分选机理进行了探讨。  相似文献   

15.
吴强  张强  张保勇  高霞 《煤炭学报》2013,38(8):1392-1396
为探寻有效改善瓦斯水合分离速率和分离浓度的方法,研究了蒙脱石(MMT)-化学促进剂(SDS 0.40 mol/L,THF 0.20 mol/L)复配体系对水合物生成过程及CH4分离浓度的影响。实验获取了瓦斯水合物生成过程的压力-时间曲线,利用水合物生长速率模型对水合物生长速率进行计算,运用气相色谱仪测定分离产物中CH4浓度,并对MMT促进机理进行初步分析。结果表明:添加MMT实验体系的瓦斯水合物生长速率较空白实验分别提高了2.43×10 -6,1.45×10 -6和2.48×10 -6 m 3/min,诱导时间分别缩短了8,7和13 min,水合分离浓度分别提高了7.77%,5.07%,0.78%;一级水合分离产物中的CH4最大提纯浓度可达70.52%。  相似文献   

16.
细粒煤分选技术与设备的发展   总被引:1,自引:0,他引:1  
细粒煤分选是煤炭高效利用的重要部分。简述了细粒煤泥难选的原因,分析研究了煤炭分选的技术及设备,包括浮选、重选及磁电选等,最后对未来细粒煤分选的发展趋势进行了展望。  相似文献   

17.
新疆某铁矿选矿试验研究   总被引:1,自引:0,他引:1  
在对新疆某铁矿石进行了工艺矿物学研究的基础上,对该矿石进行不同条件的干选、磁选、反浮选工艺等合理技术参数研究,最终采用阶段磨矿、干选-磁选-反浮选工艺对该矿石进行了工艺流程试验研究.  相似文献   

18.
某低品位微细粒铬铁矿Cr_2O_3品位较低,为6.82%,且泥化现象严重。采用"重选前分级—两段螺旋溜槽—粗细分级—两段摇床"工艺流程处理此铬铁矿,最终可以获得Cr_2O_3品位49.20%,回收率54.39%的精矿。最终尾矿中TFe品位为43.11%,回收率为94.74%。对最终尾矿中的铁进行回收,经过两段强磁选试验,所得精矿TFe品位为45.25%,回收率为27.51%,微细粒级的泥化现象导致了选别效果不理想,有待在后续试验中进一步考察研究。  相似文献   

19.
攀枝花某铁尾矿中钛主要以钛铁矿、钛磁铁矿形式存在,由于原生产工艺不合理导致钛精矿中钛回收率低、硫品位高等问题,为此进行了详细的选矿试验研究。经多方案对比,最终确定采用弱磁选—强磁选—螺旋溜槽重选—电选工艺,可获得TiO_2含量47.33%、回收率为55.13%、含硫0.15%的钛精矿,为后续的工艺流程设计提供了依据。  相似文献   

20.
攀枝花选钛厂工艺流程优化研究及工业试验   总被引:2,自引:1,他引:2  
分析了攀枝花选钛厂现行选钛生产工艺,指出了粗选操作不易控制,分选指标差是造成选钛回收率低的主要原因,根据物料性质,提出了螺旋选矿机、螺旋溜槽-强磁选的粗选流程,介绍了与之相应的筛分、磨矿等配套技术措施,经工业试验表明,优化后的新流程在保证钛精矿质量条件下,又使钛精矿的回收率得到较大提高,且生产过程稳定,易于控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号