首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this work, we assessed the in-vitro effects of eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) (final concentration, 15 microM) on T cell blastogenesis, interleukin-2 and -4 (IL-2, IL-4) secretion, fatty acid composition and intracellular oxidative status in type I diabetic patients with or without complications. Con A stimulated lymphocyte proliferation, glucose uptake, intracellular reduced glutathione levels and catalase activity were lower in diabetics as compared to controls, regardless to the presence of complications. EPA and DHA diminished T-lymphocyte proliferation and IL-2 production but enhanced IL-4 secretion in both diabetic and control groups. No changes in the levels of reduced glutathione and in the activities of catalase and SOD were observed in control T cells cultured in the presence of EPA and DHA. However, in diabetic patients, addition of n-3 PUFA to culture induced an increase in T cell levels of reduced glutathione and hydroperoxide, and in activities of catalase and SOD. Low levels of arachidonic acid (C20:4n-6) were found in plasma membrane phospholipids of lymphocytes from diabetic patients compared to controls. Incubation of lymphocytes with EPA and DHA was associated with an incorporation of these fatty acids in membrane phospholipids. In conclusion, the beneficial effects of n-3 PUFA on T cell functions in type I diabetes could be attributed to their suppressive action and modulation of cytokine secretion, and to the improvement of intracellular oxidative status.  相似文献   

2.
The early to mid-gestational period (days 28-78) in sheep is the period of most rapid placental development. Maternal nutrient restriction (MNR) in this phase has negative consequences on fetal growth and development, predisposing the fetus to disease in adult life. The influence of MNR on fetal tissue fatty acids has not been reported. Ewes were fed to 50% (MNR) or 100% (control fed) of total digestible nutrients from days 28 to 78 of gestation. At 78 days, fetuses were sacrificed and the fatty acids in fetal liver, lung and muscle as well as maternal and fetal plasma were analyzed. Most fatty acids were not influenced by MNR. The n-3 long chain PUFA eicosapentaenoic acid (20:5n-3, EPA) concentration (microg/mg) was low and more than doubled in the MNR sheep. Similarly, docosapentaenoic acid (22:5n-3, DPA) increased by 60, 19, and 38% in liver, lung, and muscle, respectively. Neither docosahexaenoic acid (22:6n-3, DHA) nor any of n-6 PUFA changed. Arachidonic acid (20:4n-6; ARA) increased in MNR maternal plasma as a percent of total fatty acids only, while in MNR fetal plasma only EPA increased. These results provide the first indication that MNR in early to mid-gestation influences the profiles of LCPUFA in fetal tissues, and suggest that metabolic processes involving LCPUFA should be considered in evaluations of the impact of maternal nutriture on perinatal health.  相似文献   

3.
The lipid and fatty acid compositions in the various organs (muscle, liver, other viscera) and stomach contents of three common herbivorous fish species in Japan, Siganus fuscescens, Calotomus japonicus and Kyphosus bigibbus, were examined to explore the stable 20:4n-6 (arachidonic acid, ARA) sources. Triacylglycerol (TAG), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) were the dominant lipid classes, while the major FA contents were 16:0, 18:1n-9, 16:1n-7, 14:0, 18:0, 18:1n-7, and some PUFA, including ARA, 20:5n-3 (eicosapentaenoic acid, EPA), 22:5n-3 (docosapentaenoic acid, DPA), and 22:6n-3 (docosahexaenoic acid, DHA). The amounts of these fatty acids were varied among species and their lipid classes. Phospholipids contained higher levels of PUFA than TAG. However, ARA in both phospholipids and TAG was markedly present in the muscle and viscera of all specimens, particularly in C. japonicus and K. bigibbus. Moreover, their ARA levels were higher than the levels of DHA and EPA. The observed high ARA level is unusual in marine fish and might be characteristic of herbivorous fish. Furthermore, ARA was the dominant PUFA in the stomach contents of the three species, suggesting that the high ARA level originated from their food sources. The above indicates that these three herbivorous fishes are ARA-rich marine foods and have potential utilization as stable ARA resources.  相似文献   

4.
Dried blood spots for fatty acid profiling are increasing in popularity; however, variability in results between laboratories has not been characterized. Whole blood from two subjects (low and high n-3 polyunsaturated fatty acid [PUFA] status) was collected, 25 μL applied to butylated hydroxytoluene (BHT)-treated chromatography strips, dried in air, and shipped to five laboratories. Results were reported as “routine” (typical fatty acids for each laboratory) or “standardized” (a set of 19 fatty acids), and outliers and variability (%CV) were determined. Five and eight outliers of a possible 91 measures each were identified by routine and standardized reporting, respectively, including eicosapentaenoic acid (EPA, 20:5n-3) in the low n-3 PUFA sample and arachidonic acid in the high n-3 PUFA sample. By standardized reporting, no outliers were identified for EPA or docosahexaenoic acid (DHA, 22:6n-3), and %CV decreased from 8.6% to 6.0% and 9.1% to 6.6% for EPA and 10.5% to 7.2% and 10.5% to 6.6% for DHA in the low and high n-3 PUFA sample, respectively. In conclusion, fatty acid profiles yielded few outliers, and standardization of reporting reduced the variability between laboratories.  相似文献   

5.
Individuals with metabolic syndrome (MetS) have a higher risk of type 2 diabetes and cardiovascular disease, therefore, research has been directed at reducing various components that contribute to MetS and associated metabolic impairments, including chronic low-grade inflammation. Epidemiological, human, animal and cell culture studies provide evidence that dietary n-3 polyunsaturated fatty acids (n-3 PUFA), including alpha-linolenic acid (18:3n-3, ALA), eicosapentaenoic acid (20:5n-3, EPA) and/or docosahexaenoic acid (22:6n-3, DHA) may improve some of the components associated with MetS. The current review will discuss recent evidence from human observational and intervention studies that focused on the effects of ALA, EPA or DHA on inflammatory markers in healthy adults and those with one or more features of MetS. Observational studies in healthy adults support the recommendation that a diet rich in n-3 fatty acids may play a role in preventing and reducing inflammation, whereas intervention studies in healthy adults have yielded inconsistent results. The majority of intervention studies in adults with features of MetS have reported a benefit for some inflammatory measures; however, other studies using high n-3 fatty acid doses and long supplementation periods have reported no effect. Overall, the data reviewed herein support recommendations for regular fatty fish consumption and point toward health benefits in terms of lowering inflammation in adults with one or more features of MetS.  相似文献   

6.
Polyunsaturated fatty acids (PUFA) such as γ-linolenic acid (GLA, 18:3n-6), eicosapentaenoic acid (EPA, 20: 5n-3), and docosahexaenoic acid (DHA, 22:6n-3) have been shown to be cytotoxic to tumor cells. The objective of this work was to study the effect of PUFA on the radiation response of a 36B10 rat astrocytoma cell line. Supplementation of the astrocytoma cells with 15–45 μM GLA, EPA, or DHA produced marked changes in the fatty acid profiles of their phospholipids and neutral lipids. The methylene bridge index of these lipids increased significantly. These PUFA also exerted cytotoxic effects, as determined using the clonogenic cell survival assay. While GLA and DHA produced a moderate cell-killing effect, EPA was extremely cytotoxic, especially at a concentration of 45 μM. The monounsaturated oleic acid (OA, 18:1n-9) did not affect cell survival. Further, all three PUFA, and particularly GLA, increased the radiation-induced cell kill; OA did not enhance the effect of radiation. α-Tocopherol acetate blocked the enhanced radiation sensitivity of GLA- and DHA-supplemented cells. In conclusion, GLA, EPA, and DHA supplementation prior to, during, and after irradiation can enhance the radiation-induced cytotoxicity of rat astrocytoma cells. GLA and DHA supplementation post-irradiation also enhanced the radiation response of the 36B10 cells. Because GLA maximally increases the radioresponsiveness of a rat astrocytoma, this PUFA might prove useful in increasing the therapeutic efficacy of radiation in the treatment of certain gliomas.  相似文献   

7.
Marine oils are commonly added to conventional foods and dietary supplements to enhance their contents of omega-3 polyunsaturated fatty acids (PUFA), including eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which have been associated with numerous potential health benefits. This study compared American Oil Chemists’ Society (AOCS) Official Methods Ce 2b-11 and Ce 2c-11 for determining EPA and DHA in foods and dietary supplements and found that AOCS Ce 2c-11 produces significantly higher analyzed values, which could be attributed to a more comprehensive breakdown of the sample matrix and derivatization of fatty acids. Our subsequent food matrix extension validation of AOCS Ce 2c-11 demonstrated that the method produces true, accurate, sensitive, and precise determinations of EPA, DHA, and total omega-3 PUFA in foods and dietary supplements containing added marine oil, including those formulated with emulsified and microencapsulated oils. The method detection limits for EPA and DHA were 0.012 ± 0.002 and 0.011 ± 0.003 mg g−1, respectively (means ± SD). The analyzed contents of EPA (1.26–386 mg serving−1), DHA (1.37–563 mg serving−1), and total omega-3 PUFA (2.69–1270 mg serving−1) were reported for 27 conventional food and dietary supplement products. Eighteen products declared contents of DHA, EPA + DHA, or total omega-3 PUFA on product labels, and the analyzed contents of those fatty acids varied from 95 to 162% of label declarations for all but two of the products.  相似文献   

8.
Population-based data suggest that individuals who consume large dietary amounts of n-3 polyunsaturated fatty acids (PUFA) have lower odds of peripheral artery disease (PAD); however, clinical studies examining n-3 PUFA levels in patients with PAD are sparse. The objective of this study is to compare erythrocyte membrane fatty acid (FA) content between patients with PAD and controls. We conducted a cross-sectional study of 179 vascular surgery outpatients (controls, 34; PAD, 145). A blood sample was drawn and the erythrocyte FA content was assayed using capillary gas chromatography. We calculated the ratio of the n-3 PUFA eicosapentaenoic acid (EPA) to the n-6 PUFA arachidonic acid (ARA) as well as the omega-3 index (O3I), a measure of erythrocyte content of the n-3 PUFA, EPA, and docosahexaenoic acid (DHA), expressed as a percentage of total erythrocyte FA. Compared with controls, patients with PAD smoked more and were more likely to have hypertension and hyperlipidemia (p < 0.05). Patients with PAD had a lower mean O3I (5.0 ± 1.7% vs 6.0 ± 1.6%, p < 0.001) and EPA:ARA ratio (0.04 ± 0.02 vs 0.05 ± 0.05, p < 0.001), but greater mean total saturated fats (39.5 ± 2.5% vs 38.5 ± 2.6%, p = 0.01). After adjusting for several patient characteristics, comorbidities, and medications, an absolute decrease of 1% in the O3I was associated with 39% greater odds of PAD (odds ratio [OR] 1.39, 95% confidence interval [CI] 1.03–1.86, and p = 0.03). PAD was associated with a deficiency of erythrocyte n-3 PUFA, a lower EPA:ARA ratio, and greater mean total saturated fats. These alterations in FA content may be involved in the pathogenesis or development of poor outcomes in PAD.  相似文献   

9.
Lipid content and fatty acid composition were determined in edible meat of fifteen marine fish species caught on the Southeast Brazilian coast and two from East Antarctic. Most of the fish had lipid amounts lower than 10% of their total weight. Palmitic acid (C16:0) predominated, accounting for 54–63% of the total amount of saturated fatty acids. Oleic acid (C18:1n-9) was the most abundant (49–69%) monounsaturated fatty acid, and docosahexaenoic acid (DHA) was the predominant polyunsaturated fatty acid (PUFA), accounting for 31–84% of n-3 PUFA. n-3 PUFA level were highest in Antarctic fish meat, comprising 45% of the total fatty acid content, which consisted of mainly EPA (16.1 ± 1.5 g/100 g lipids) and DHA (24.8 ± 2.4 g/100 g lipids). The amounts of EPA + DHA in g/100 g of lipids on the Southeast Brazilian coast and Antarctic fish species investigated were found to be similar: 42.0 ± 1.7 for Bonito cachorro, 41.0 ± 2.3 for Atum, and 39.4 ± 1.8 for peixe porco, respectively. All the studied species exhibited an n-3/n-6 ratio higher than 3, which confirms the great importance of Southeast Brazilian coast fish as a significant dietary source of n-3 PUFA.  相似文献   

10.
Previous studies have shown that exogenous free n-3 polyunsaturated fatty acids (PUFA) can prevent tachyarrhythmias caused by specific agents in isolated cardiac myocytes. However, the question as to whether incorporation of the n-3 PUFA into membrane phospholipids has the same immediate protective effects remained to be answered. To answer this question, we increased the content of n-3 PUFA in the phospholipids of cultured neonatal rat myocytes by growing them 2–3 d in a culture to which eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in 15 μM concentration was added. Analysis of the fatty acid composition of membrane phospholipids revealed a significantly higher level of EPA and DHA (from 0.2 to 7.6% and from 1.2 to 6.5%) in cells supplemented with EPA or DHA, respectively. The responses of the myocytes grown in normal media or in media enriched with the PUFA to arrhythmogenic agents were examined after free fatty acids were removed from the medium and the cells. The arrhythmogenic agents used were the β-adrenergic agonist isoproterenol or an elevated extracellular concentration of calcium. The results showed that there was no significant difference in the induction of tachyarrhythmias by isoproterenol or by elevated [Ca2+]o in cells grown in media enriched with PUFA, as compared with cells grown in normal media in the absence of the free PUFA. Under the conditions of this study, only the unesterified PUFA were able to protect the cardiomyocytes against induced arrhythmias. There was no antiarrhythmic effect due to an increased fraction of EPA or DHA in membrane phospholipids.  相似文献   

11.
Oxylipins are bioactive lipids formed by the monooxygenation of polyunsaturated fatty acids (PUFA). Eicosanoids derived from arachidonic acid (ARA) are the most well-studied class of oxylipins that influence brain functions in normal health and in disease. However, comprehensive profiling of brain oxylipins from other PUFA with differing functions, and the examination of the effects of dietary PUFA and sex differences in oxylipins are warranted. Therefore, female and male Sprague–Dawley rats were provided standard rodent diets that provided additional levels of the individual n-3 PUFA α-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), or the n-6 PUFA linoleic acid (LNA) alone or with ALA (LNA + ALA) compared to essential fatty acid-sufficient control diets. Oxylipins and PUFA were quantified in whole brains using HPLC-MS/MS and GC, respectively. Eighty-seven oxylipins were present at quantifiable levels: 51% and 17% of these were derived from ARA and DHA, respectively. At the mass level, ARA and DHA oxylipins comprised 81–90% and 6–12% of total oxylipins, while phospholipid ARA and DHA represented 25–35% and 49–62% of PUFA mass, respectively. Increasing dietary n-3 PUFA resulted in higher levels of oxylipins derived from their precursor PUFA; otherwise, the brain oxylipin profile was largely resistant to modulation by diet. Approximately 25% of oxylipins were higher in males, and this was largely unaffected by diet, further revealing a tight regulation of brain oxylipin levels. These fundamental data on brain oxylipin composition, diet effects, and sex differences will help guide future studies examining the functions of oxylipins in the brain.  相似文献   

12.
Scientific investigation of lipids in Elasmobranchs has been conducted mainly on shark species. Because rays seem to be neglected, this study was performed to examine the complete fatty acid (FA) composition with a particular interest for long-chain polyunsaturated FA (PUFA) content in different tissues of three ray species including parts usually discarded. The total FA and PUFA profiles of total lipids were determined in muscle, liver, and gonad of Rhinobatos cemiculus, Rhinoptera marginata, and Dasyatis marmorata, the most often caught ray species from the East Tropical Atlantic Ocean. Fifty FA were characterized as methyl esters and N-acyl pyrrolidides by gas chromatography/mass spectrometry, showing significant levels of 20:5n-3 (EPA) (up to 5.3%) and 22:5n-3 (DPA) (up to 7.3%), high levels of 20:4n-6 arachidonic (ARA) (4.8–8.6% of total FA) and 22:6n-3 (DHA) (up to 20.0%). The results show that muscle, liver and gonad of rays can provide high amounts of essential PUFA, specially DHA, for direct human nutrition or the food processing industry. High proportions of DHA were particularly found in all samples of R. cemiculus (11.6–20.0%), and in muscle and liver of D. marmorata (11.1–16.1%). Regarding the high amounts of (n-3) PUFA, this study shows that these rays deserve a better up-grading, including the normally discarded parts, and describes the occurrence of unusual NMID FA in all tissues studied. Five non-methylene-interrupted dienoic fatty acids (NMID FA) (0–3.4%) were reported, including previously known isomers, namely 20:2 Δ7,13, 20:2 Δ7,15, 22:2 Δ7,13, 22:2 Δ7,15, and new 22:2 Δ6,14. These acids are quite unusual in fish and unprecedented in rays. The 22:2 Δ6,14 acid occurred in gonads of male specimens of R. cemiculus at 2.9%.  相似文献   

13.
Weanling rats were fed on high-fat (178 g/kg) diets which contained 4.4 g α-linolenic (ALA), γ-linolenic, arachidonic (ARA), eicosapentaenoic (EPA), or docosahexaenoic acid (DHA)/100 g total fatty acids. The proportions of all other fatty acids, apart from linoleic acid, and the proportion of total polyunsaturated fatty acids (PUFA) (approximately 35 g/100 g total fatty acids) were constant, and the n−6 to n−3 PUFA ratio was maintained as close to 7 as possible. The fatty acid compositions of the serum and of spleen leukocytes were markedly influenced by that of the diet. Prostaglandin E2 production was enhanced from leukocytes from rats fed the ARA-rich diet and was decreased from leukocytes from the EPA- or DHA-fed rats. Replacing dietary ALA with EPA resulted in diminished ex vivo lymphocyte proliferation and natural killer (NK) cell activity and a reduced cell-mediated immune response in vivo. In contrast, replacing ALA with DHA reduced ex vivo lymphocyte proliferation but did not affect ex vivo NK cell activity or the cell-mediated immune response in vivo. Replacement of a proportion of linoleic acid with either γ-linolenic acid or ARA did not affect lymphocyte proliferation, NK cell activity, or the cell-mediated immune response. Thus, this study shows that different n−3 PUFA exert different immunomodulatory actions, that EPA exerts more widespread and/or stronger immunomodulatory effects than DHA, that a low level of EPA is sufficient to influence the immune response, and that the immunomodulatory effects of fish oil may be mainly due to EPA.  相似文献   

14.
The effects of seasons on the lipid content and fatty acid compositions of five different shrimp and prawn species (green tiger prawn – Penaeus semisulcatus, kuruma prawn – Marsupenaeus japonicus, caramote prawn – Melicertus kerathurus, deepwater pink shrimp – Parapenaeus longirostris, speckled shrimp – Metapenaeus monoceros) were evaluated. Results showed that lipid content ranged from 0.89 to 1.55% in muscle, showing that all species were considered as lean. There were significant differences (p<0.05) in the levels of saturated fatty acids (SFA), monounsaturated fatty acids and polyunsaturated fatty acids (PUFA) in terms of season and species. They were rich in n‐3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The highest proportions of EPA were obtained from kuruma prawn (180.9 mg/100 g) in spring and deepwater pink shrimp (173.2 mg/100 g) and caramote prawn (146.3 mg/100 g) in summer. Kuruma prawn had the highest DHA in spring (140.8 mg/100 g) followed by deepwater pink shrimp (132.2 mg/100 g) and caramote prawn (129.6 mg/100 g) in summer. The results also showed that the seasons affected lipid content and the fatty acid composition of shrimp and prawn species. Practical Application: The beneficial effect of seafood consumption on human health has been related to the high content of n‐3 fatty acids, especially EPA (20:5n‐3) and DHA (22:6n‐3). The ratios of n‐6/n‐3, PUFA/SFA and EPA + DHA are considered as useful criteria for comparing relative nutritional and oxidation values of marine oils. In the current study, the influence of seasonality on the lipid content and the fatty acid compositions of shrimp and prawn were investigated in order to find the best source of n‐3 fatty acids during the year.  相似文献   

15.
In view of the promising future for use of n-3 polyunsaturated fatty acids (PUFA) in the prevention of cancer and cardiovascular diseases, it is necessary to ensure that their consumption does not result in detrimental oxidative effects. The aim of the present work was to test a hypothesis that low doses of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) do not induce harmful modifications of oxidative cell metabolism, as modifications of membrane fatty acid composition occur. Wistar rats received by gavage oleic acid, EPA, or DHA (360 mg/kg body weight/day) for a period of 1 or 4 wk. Fatty acid composition and α-tocopherol content were determined for plasma, red blood cell (RBC) membranes, and liver, kidney, lung, and heart microsomal membranes. Susceptibility to oxidative stress induced by tert-butylhydroperoxide was measured in RBC. EPA treatment increased EPA and docosapentaenoic acid (DPA) content in plasma and in all the membranes studied. DHA treatment mainly increased DHA content. Both treatments decreased arachidonic acid content and n-6/n-3 PUFA ratio in the membranes, without modifying the Unsaturation Index. No changes in tissue α-tocopherol content and in RBC susceptibility to oxidative stress were induced by either EPA or DHA treatment. The data suggest that EPA and DHA treatments can substantially modify membrane fatty acids, with-out increasing susceptibility to oxidative stress, when administered at low doses. This opens the possibility for use of low doses of n-3 PUFA for chemoprevention without risk of detrimental secondary effects.  相似文献   

16.
The purpose of this study was to determine whether dietary n-3 and n-6 PUFA may affect retinal PUFA composition and PGE1 and PGE2 production. Male Wistar rats were fed for 3 months with diets containing: (1) 10% eicosapentaenoic acid (EPA) and 7% docosahexaenoic acid (DHA), or (2) 10% γ-linolenic acid (GLA), or (3) 10% EPA, 7% DHA and 10% GLA, or (4) a balanced diet deprived of EPA, DHA, and GLA. The fatty acid composition of retinal phospholipids was determined by gas chromatography. Prostaglandin production was measured by enzyme immunoassay. When compared to rats fed the control diet, the retinal levels of DHA were increased in rats fed both diets enriched with n-3 PUFA (EPA + DHA and EPA + DHA + GLA diets) and decreased in those supplemented with n-6 PUFA only (GLA diet). The diet enriched with both n-6 and n-3 PUFA resulted in the greatest increase in retinal DHA. The levels of PGE1 and PGE2 were significantly increased in retinal homogenates of rats fed with the GLA-rich diet when compared with those of animals fed the control diet. These higher PGE1 and PGE2 levels were not observed in animals fed with EPA + DHA + GLA. In summary, GLA added to EPA + DHA resulted in the highest retinal DHA content but without increasing retinal PGE2 as seen in animals supplemented with GLA only.  相似文献   

17.
18.
Marine fishes are rich in n-3 polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are extremely important for human health. The objective of our work was to determine the content and composition of lipids and fatty acids in the different tissues of cobia from China and to evaluate their nutritional value. The results showed that cobia from China was rich in lipids; the neutral lipid content was above 82%; the content of cholesterol and phospholipid was low. Eighteen fatty acids were identified. Myristic (C14:0), palmitic (C16:0), and stearic acids (C18:0) were the main saturated acids; palmitoleic (C16:1n-7) and oleic acid (C18:1n-9) were the main monounsaturated fatty acids. EPA and DHA were the main PUFA; n-3 and n-6 PUFA were present as 12–18% and 2.6–3.2% of the total fatty acids, respectively. The n-6/n-3 ratio was in the range from 0.18 to 0.22, which was far lower than that (5:1) recommended by WHO/FAO. Therefore, cobia lipids from China have a high nutritional value.  相似文献   

19.
The effects of n-3 fatty acid supplementation in the form of fresh fish, fish oil, and docosahexaenoic acid (DHA) oil on the fatty acid composition of plasma lipid fractions, and platelets and erythrocyte membranes of young healthy male students were examined. Altogether 59 subjects (aged 19–32 yr, body mass index 16.8–31.3 kg/m2) were randomized into the following diet groups: (i) control group; (ii) fish diet group eating fish meals five times per week [0.38±0.04 g eicosapentaenoic acid (EPA) and 0.67±0.09 g DHA per day]; (iii) DHA oil group taking algae-derived DHA oil capsules (1.68 g/d DHA oil group taking algae-derived DHA oil capsules (1.68 g/d DHA in triglyceride form); and (iv) fish oil group (1.33 g EPA and 0.95 g DHA/d as free fatty acids) for 14 wk. The fatty acid composition of plasma lipids, platelets, and erythrocyte membranes was analyzed by gas chromatography. The subjects kept 4-d food records four times during the study to estimate the intake of nutrients. In the fish diet, in DHA oil, and in fish oil groups, the amounts of n-3 fatty acids increased and those of n-6 fatty acids decreased significantly in plasma lipid fractions and in platelets and erythrocyte membranes. A positive relationship was shown between the total n-3 polyunsaturated fatty acids (PUFA) and EPA and DHA intake and the increase in total n-3 PUFA and EPA and DHA in all lipid fractions analyzed. DHA was preferentially incorporated into phospholipid (PL) and triglyceride (TG) and there was very little uptake in cholesterol ester (CE), while EPA was preferentially incorporated into PL and CE. The proportion of EPA in plasma lipids and platelets and erythrocyte membranes increased also by DHA supplementation, and the proportion of linoleic acid increased in platelets and erythrocyte membranes in the DHA oil group as well. These results suggest retroconversion of DHA to EPA and that DHA also interferes with linoleic acid metabolism.  相似文献   

20.
We studied the fatty acid (FA) content and composition of ten zoobenthic species of several taxonomic groups from different freshwater bodies. Special attention was paid to essential polyunsaturated fatty acids, eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (ARA, 20:4n-6); and the n-3/n-6 and DHA/ARA ratios, which are important for consumers of higher trophic levels, i.e., fish. The content and ratios of these FA varied significantly in the studied zoobenthic species, consequently, the invertebrates were of different nutritional quality for fish. Eulimnogammarus viridis (Crustacea) and Dendrocoelopsis sp. (Turbellaria) had the highest nutrition value for fish concerning the content of EPA and DHA and n-3/n-6 and DHA/ARA ratios. Using canonical correspondence analysis we compared the FA profiles of species of the studied taxa taking into account their feeding strategies and habitats. We gained evidence that feeding strategy is of importance to determine fatty acid profiles of zoobenthic species. However, the phylogenetic position of the zoobenthic species is also responsible and may result in a similar fatty acid composition even if species or populations inhabit different water bodies or have different feeding strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号