首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical properties of poly(ethylene terephthalate)/high-density poly(ethylene) (PET/HDPE) blends were improved by γ-ray irradiation combined with using a cross-linking agent—trimethylol propane trimethacrylate (TMPTA). The effect of the weight ratio of PET/HDPE, the content of TMPTA and the absorbed dose on the phase morphology and the mechanical properties of the PET/HDPE blends were investigated through scanning electron microscopy (SEM), gel fraction, Fourier transform infrared spectroscopy (FTIR), tensile and impact tests. SEM images showed that the phase structure changed significantly as TMPTA coexistence. The results of tensile and impact tests indicated that their mechanical properties depended on their structures. FTIR spectra suggested that a new structure of HDPE-g-PET was generated. When the weight ratio of PET/HDPE blend was 80/20, the content of TMPTA was 1 wt% and the absorbed dose was 30 kGy, the tensile strength, elongation at break and impact strength of irradiated blends were improved greatly compared with non-irradiated blends.  相似文献   

2.
Glass beads were used to improve the mechanical and thermal properties of high‐density polyethylene (HDPE). HDPE/glass‐bead blends were prepared in a Brabender‐like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass‐bead blends increased considerably with increasing glass‐bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass‐bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass‐bead content up to a critical value; thereafter, it increased sharply with increasing glass‐bead content. That is, the Izod impact strength of the blends underwent a sharp transition with increasing glass‐bead content. It was calculated that the critical interparticle distance for the HDPE/glass‐bead blends at room temperature (25°C) was 2.5 μm. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass‐bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass‐bead content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2102–2107, 2003  相似文献   

3.
High density polyethylene (HDPE) and polyamide (PA66) are well known to be incompatible. An ionomer (Surlyn) was added as a compatibilizer to HDPE and glass fiber reinforced (HDPE/GFRPA66) and non‐reinforced (HDPE/PA66) blends. Two compositions were considered: 25/75 wt % and 75/25 wt %, with an emphasis on the former formulation. The influence of the compatibilizer on the rheology, thermal properties, and the morphology, as well as mechanical properties of the blends, was investigated using melt flow index measurements, DSC, scanning electron microscopy (SEM), and impact strength. The ionomer was found to be more effective as a compatibilizer with HDPE as a minor phase compared to the case when HDPE becomes the major phase. The results indicated that the interfacial properties of the blends were improved, with a maximum appearing at a critical concentration of the ionomer (7.5 vol %). At this level of compatibilization, SEM analysis revealed better interfacial adhesion and a finer dispersion. MFI results revealed a probable reaction between the amine groups of PA66 and the acid functions of the ionomer. The mechanical properties support the above results and showed that the addition of 25 wt % HDPE did not affect the properties of PA66 much and the presence of glass fiber did not hinder the effect of the compatibilizer. Only 20% decrease in notched Izod impact strength of the blends is observed at 7.5 vol % ionomer content, suggesting that the addition of 25 wt % of HDPE to PA66 is not detrimental at this level of compatibilization. The emulsification curve was established and revealed that, in terms of impact properties, the finer the particle size, the higher the impact strength corresponding to 7.5 vol % ionomer content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1748–1760, 2005  相似文献   

4.
The morphology and mechanical properties of a styrene–ethylene/butylene–styrene triblock copolymer (SEBS) incorporated with high‐density polyethylene (HDPE) particles were investigated. The impact strength and tensile strength of the SEBS matrix obviously increased after the incorporation of the HDPE particles. The microstructure of the SEBS/HDPE blends was observed with scanning electron microscopy and polar optical microscopy, which illustrated that the SEBS/HDPE blends were phase‐separation systems. Dynamic mechanical thermal analysis was also employed to characterize the interaction between SEBS and HDPE. The relationship between the morphology and mechanical properties of the SEBS/HDPE blends was discussed, and the toughening mechanism of rigid organic particles was employed to explain the improvement in the mechanical properties of the SEBS/HDPE blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
In this study, ethylene/styrene interpolymer was used as a compatibilizer for the blends of polystyrene (PS) and high‐density polyethylene (HDPE). The mechanical properties including tensile and impact properties and morphology of the blends were investigated by means of uniaxial tension, instrumented falling‐weight impact measurements, and scanning electron microscopy. Tensile tests showed that the yield strength of the PS/HDPE/ESI blends decreases considerably with increasing HDPE content. However, the elongation at break of the blends tended to increase significantly with increasing HDPE content. The excellent tensile ductility of the HDPE‐rich blends resulted from shield yielding of the matrix. Izod and Charpy impact measurements indicated that the impact strength of the blends increases slowly with HDPE content up to 40 wt %; thereafter, it increases sharply with increasing HDPE content. The impact energy of the HDPE‐rich blends exceeded that of pure HDPE, implying that the HDPE polymer can be further toughened by the incorporation of brittle PS minor phase in the presence of ESI compatibilizer. The correlation between the impact property and morphology of the blends is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4001–4007, 2007  相似文献   

6.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
In this study, polystyrene–hydrogenated polybutadiene–polystyrene (SEBS) triblock copolymer was used as a compatibilizer for the blends of polystyrene (PS) and high-density polyethylene (HDPE). The morphology and static mechanical and impact properties of the blends were investigated by means of scanning electron microscopy, uniaxial tension, and instrumented falling-weight impact measurements. Tensile tests showed that the yield strength of the PS/HDPE/SEBS blends decreases considerably with increasing HDPE content. However, the elongation at break of the blends tended to increase significantly with increasing HDPE content. The excellent tensile ductility of the HDPE-rich blends resulted from shield yielding of the matrix. Charpy impact measurements indicated that the impact strength of the blends increases slowly with HDPE content up to 50 wt %; thereafter, it increases sharply with increasing HDPE content. The impact energy of the HDPE-rich blends exceeded that of pure HDPE, implying that the HDPE polymer can be further toughened by the incorporation of brittle PS minor phase in the presence of SEBS compatibilizer. The correlation between the impact property and morphology of the blends is discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1099–1108, 1998  相似文献   

8.
In this article, we discuss the effect of a compatibilizer for binary blends on the properties of ternary blends composed of high‐density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) and poly(vinyl chloride) (PVC) virgin polymers with a simulated waste plastics fraction. Chlorinated polyethylene (CPE), ethylene–propylene rubber (EPR), and their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PP/PVC ternary blend. CPE, styrene‐ethylene‐propylene block copolymer (SEP), or their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PS/PVC ternary blend. The composition of the ternary blends were fixed at 8/1/1 by weight ratio. The amount of the compatibilizer was 3 phr. Rheological, mechanical, and thermal properties were measured. For the 8/1/1 HDPE/PP/PVC ternary blends, the tensile strength was slightly decreased, but the impact strength was significantly increased by adding EPR, CPE, or their mixture. EPR exhibited the most significant impact modification effect for the ternary blends. In a similar way, for 8/1/1 HDPE/PS/PVC ternary blends, on adding SEP, CPE, or their mixture, the tensile strength was slightly decreased, but the impact strength was noticeably increased. It was found that the SEP worked much better as an impact modifier for the ternary blends than CPE or the SEP/CPE mixture did. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1048–1053, 2000  相似文献   

9.
聚烯烃改性PET的研究   总被引:8,自引:2,他引:8  
通过PET与PP、HDPE、EPDM挤出共混,注射模塑制得试样。经DTA、SEM和力学性能测试,表征了共混体系的热行为、结构形态和力学性能。结果表明,在PET/PP(EPDM、HDPE)共混体系中,加入少量的PP-g-MI(EPDM-g-MAH、PE-g-MI),可较好地改善PEt与PP(EPDM、HDPE)之间的相容性,使分散相在PET基体连续相中分散均匀,分散相尺寸减小,增加了两相间界面的粘结力;同时对PET的结晶有较强的促进作用,使其冷结晶温度降低,改善了PET的加工性能;并且能大幅度提高共混物的冲击强度。  相似文献   

10.
Among the synthetic fibers, glass fibers (GF) are most widely used in thermoplastic short‐fiber‐reinforced polymers (SFRP), as they offer good strength and stiffness, impact resistance, chemical resistance, and thermal stability at a low price. Carbon fibers (CF) are applied instead of GF, when highest stiffness is required. Other types of synthetic fibers like aramid (AF), basalt (BF), polyacrylonitrile (PAN‐F), polyethylene terephthalate (PET‐F), or polypropylene fibers (PP‐F) are rarely used in SFRP, although they offer some advantages compared with GF. The aim of this article is, to give an overview of various fiber types with regard to their mechanical properties, densities, and prices as well as the performance of their thermoplastic composites. The mechanical properties are presented as Ashby plots of tensile strength versus tensile modulus, both in absolute and specific (absolute value divided by density) values. This overview also focuses on modification of fiber/matrix interaction, as interfacial adhesion has a huge impact on composite performance. A summary of established methods for characterization of fibers, polymers, and composites completes this article. POLYM. COMPOS., 35:227–236, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
Polymer blend technology has been widely used for the past several years for the modification or enhancement of mechanical properties of polymers to obtain an overall balance of properties over those of the constituents. Despite its interesting mechanical and thermal properties, the impact strength of polypropylene leaves wide scope for improvement. A series of blends of ethylene vinyl acetate (EVA) copolymer with an impact grade of isotactic polypropylene (i‐PP) were prepared by single screw extrusion at 0–0.32 volume fraction of the dispersed phase. The mechanical properties such as tensile behavior, elongation‐at‐break, and impact strength of these blends systems as well as crystallinity were evaluated. Crystallinity data have been used in greater depth to support the mechanical properties. Differential scanning calorimetry studies conducted to study the modification in crystallinity of the crystalline component, i‐PP, of the blend revealed that the rubber component of the blend enhanced the crystallinity of i‐PP phase by providing sites for nucleation. Tensile modulus and strength decreased while the impact strength and breaking elongation enhanced with blending elastomer concentration. The improved properties of these PP/EVA blends are encouraging for carrying out further work on this system (composites) and suggest potential high impact strength applications for PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Poly(styrene‐co‐acylonitrile) was used to modify diglycedyl ether of bisphenol‐A type epoxy resin cured with diamino diphenyl sulfone and the modified epoxy resin was used as the matrix for fiber‐reinforced composites (FRPs) to get improved mechanical properties. E‐glass fiber was used as fiber reinforcement. The tensile, flexural, and impact properties of the blends and composites were investigated. The blends exhibited considerable improvement in mechanical properties. The scanning electron micrographs of the fractured surfaces of the blends and tensile fractured surfaces of the composites were also analyzed. The micrographs showed the influence of morphology on the properties of blends. Results showed that the mechanical properties of glass FRPs increased gradually upon fiber loading. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
In situ microfiber reinforced conductive polymer composites consisting of high‐density polyethylene (HDPE), poly(ethylene terephthalate) (PET), and multiwalled carbon nanotube (CNT) were prepared in a twin screw extruder followed by hot stretching of PET/CNT phase in HDPE matrix. For comparison purposes, the HDPE/PET blends and HDPE/PET/CNT composites were also produced without hot stretching. Extrusion process parameters, hot‐stretching speed, and CNT amount in the composites were kept constant during the experiments. Effects of PET content and molding temperature on the morphology, electrical, and mechanical properties of the composites were investigated. Morphological observations showed that PET/CNT microfibers were successfully formed in HDPE phase. Electrical conductivities of the microfibrillar composites were in semi‐conductor range at 0.5 wt% CNT content. Microfiber reinforcement improved the tensile strength of the microfibrillar HDPE/PET/CNT composites in comparison to that of HDPE/PET blends and HDPE/PET/CNT composites prepared without hot stretching. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

14.
High-density polyethylene (HDPE) and isotactic polypropylene (PP) were mixed either with a stabilizer or with a stabilizer and a compatibilizer in different mixing ratios. The structure and properties of these blends were analyzed by methods such as torsion pendulum measurements, mechanical short time experiments, electron microscopy, and fracture mechanical toughness tests. The results display a strongly increased impact strength in the HDPE/PP blend with compatibilizer within a specific mixing region. The deformation behavior and the mechanism leading to the increased impact strength of the blends were investigated in tensile tests by acoustic emission analysis and scanning electron microscopy: Increased fibrilation and strong strain was registered in the blend with compatibilizer. The impact strength was modeled, using experimentally measured properties such as energy release rate, matrix and inclusion volumes, the impact strength of each component. The inclusion volume that causes plastic deformation was chosen as an additional parameter. The calculated results are in good agreement with the experimental ones.  相似文献   

15.
Tapioca starch in both glycerol‐plasticized and in unplasticized states was blended with high‐density polyethylene (HDPE) using HDPE‐g‐maleic anhydride as the compatibilizer. The impact and tensile properties of the blends were measured according to ASTM methods. The results reveal that blends containing plasticized starch have better mechanical properties than those containing unplasticized starch. High values of elongation at break at par with those of virgin HDPE could be obtained for blends, even with high loading of plasticized starch. Morphological studies by SEM microscopy of impact‐fractured specimens of such blends revealed a ductile fracture, unlike blends with unplasticized starch at such high loadings, which showed brittle fracture, even with the addition of compatibilizer. In general, blends of HDPE and plasticized starch with added compatibilizer show better mechanical properties than similar blends containing unplasticized starch. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 863–872, 2001  相似文献   

16.
Poly(butylene terephthalate)/high density polyethylene (PBT/HDPE) blends and PBT/HDPE‐grafted maleic anhydride (PBT/HDPE‐g‐MAH) blends were prepared by the reactive extrusion approach, and the effect of blend compositions on the morphologies and properties of PBT/HDPE blends and PBT/HDPE‐g‐MAH blends was studied in detail. The results showed that flexural strength, tensile strength, and notched impact strength of PBT/HDPE blends decreased with the addition of HDPE, and flexural strength and tensile strength of PBT/HDPE‐g‐MAH blends decreased, while the notched impact strength of PBT/HDPE‐g‐MAH increased with the addition of HDPE‐g‐MAH. Compared with PBT/HDPE blends, the dimension of the dispersed phase particles in PBT/HDPE‐g‐MAH blends was decreased and the interfacial adhesion was increased. On the other hand, the effects of HDPE and HDPE‐g‐MAH contents on the crystalline and the rheological properties of the blends were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6081–6087, 2006  相似文献   

17.
Rice straw fiber‐high density polyethylene (HDPE) composites were prepared to investigate the effects of rice straw fiber morphology (rice straw refined fiber, rice straw pellet, rice straw strand), fiber content (20 and 40 wt %), and maleic anhydride polyethylene (MAPE) concentration (5 wt %) on the mechanical and thermal properties of the rice straw fiber‐HDPE composites in this study. Rice straw refined fiber exhibited more variability in length and width, and have a higher aspect ratio of 16.3. Compared to the composites filled of rice straw pellet, the composites made of the refined fiber and strand had a slightly higher tensile strength and lower tensile elongation at break. The tensile and flexural strength of the composites increased slightly with increasing rice straw fiber content up to 40 wt %, while the tensile elongation at break decreased. With addition MAPE, the composites filled with 20 wt % rice straw fiber showed an increase in tensile, flexural and impact strength and a decrease in tensile elongation at break. Differential scanning calorimetry showed that the fiber addition and morphology had no appreciable effect on the crystallization temperature of the composites but decreased the crystallinity. The scanning electron microscopy observation on the fracture surface of the composites indicated that introduction of MAPE to the system resulted in promotion in fiber dispersion, and an increase in interfacial bonding strength. Fiber breakage occurred significantly in the composites filled with refined fiber and strand after extruding and injection processing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The aim of this study was to improve mechanical properties of polypropylene/cycloolefin copolymer (PP/COC) blends by processing‐induced formation of long COC fibers. According to the available literature, the fibrous morphology in PP/COC blends was observed just once by coincidence. For this reason, we focused our attention on finding processing conditions yielding PP/COC fibrous morphology in a well‐defined, reproducible way. A number of PP/COC blends were prepared by both compression molding and injection molding (IM). Neat polymers were characterized by rheological measurements, whereas phase morphology of the resulting PP/COC blends was characterized by means of scanning electron microscopy (SEM). The longest COC fibers were achieved in the injection molded PP/COC blends with compositions 75/25 and 70/30 wt %. Elastic modulus and yield strength of all blends were measured as functions of the blend composition using an Instron tensile tester; statistically significant improvement of the yield strength due to fibrous morphology was proved. Moreover, two different models were applied in the analysis of mechanical properties: (i) the equivalent box model for isotropic blends and (ii) the Halpin‐Tsai model for long fiber composites. In all PP/COC blends prepared by IM, the COC fibers were oriented in the processing direction, as documented by SEM micrographs, and acted as a reinforcing component, as evidenced by stress–strain measurements. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The injection‐molded specimens of neat HDPE and the PET/HDPE blends were prepared by conventional injection molding (CIM) and by pressure vibration injection molding (PVIM), respectively. The effect of oscillation pressure and PET phase with different shapes on superstructure and its crystal orientation distribution of injection molded samples were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and two‐dimension wide‐angle X‐ray diffraction techniques (2D‐WAXD). Hermans' orientation functions were determined from the wide‐angle X‐ray diffraction patterns. With the PET particles added, the shear viscosity of blend increase and crystallization rate of HDPE phase is enhanced. For the neat HDPE samples, with the promotion from oscillation shear, the orientation parameter experienced a large increase, moreover, the PVIM can induce transverse lamellae (kebabs) twisting in growth direction. Because of the redefined flow field and nucleation effect of PET particles, the crystal orientation of blend is also increased. So the tensile strength of vibration samples enhanced and elongation at break declined. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Micron‐size crystalline particles of Poly(ethylene terephthalate) (PET), obtained from PET bottles by crystallization and grinding, were used as a filler in high‐density polyethylene (HDPE). The composite of PET particle‐filled HDPE was prepared by melt mixing at 190°C, which was well below the melting temperature of PET. Silane coupling agents (SCAs) were used to enhance the interaction between PET and HDPE in the composite. A chain extender (CE) and maleic anhydride (MA) were also used to provide further interaction with SCAs between these two materials. The ultimate tensile strength, especially at highest content 40% PET‐filled HDPE, and the impact strength of SCAs‐treated PET‐filled HDPE was found to be highly improved compared to untreated PET filling into HDPE. Dynamic mechanical analyses (DMA) demonstrated that Tg of the main matrix polyethylene was depressed from 3 to 10°C. Scanning electron microscopy (SEM) studies indicated a strong interaction between PET powder and HDPE when SCAs were present in the system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 827–835, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号