首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal decomposition of DNTF‐CMDB propellants was investigated by pressure differential scanning calorimetry (PDSC) and thermogravimetry (TG). The results show that there is only one decomposition peak on DSC curves, because the decomposition peak of DNTF cannot be separated from that of the NC/NG binder. The decomposition of DNTF can be obviously accelerated by the decomposition products of the NC/NG binder. The kinetic parameters of thermal decompositions for four DNTF‐CMDB propellants at 6 MPa were obtained by the Kissinger method. It is found that the reaction rate decreases with increasing content of DNTF.  相似文献   

2.
In this research work some malonanilide derivatives (M1‐M5) have been prepared and used as stabilizers for double‐base propellants (DBPs). Their stabilization effect has been compared with the effect of N,N‐diethyldiphenylurea (C1) as a classical stabilizer. Thermal analysis (TA) study under non‐isothermal conditions was carried out on propellant samples containing stabilizers. This study gave information about the thermal stability effect of different stabilizers on DBPs, thermal decomposition and some thermodynamic parameters. The non‐isothermal (TGA and DSC) results show that the o‐dinitromalonanilide (M3) has the highest thermal stability effect on the propellant samples. The molecular orbital calculations such as energy gap (ΔE), net charge, ELUMO, EHOMO, IP, and Ea were done and compared with TA experimental data. It was finally concluded that there is no single factor controlling the stabilizing effect of different stabilizers on thermal stability of DBPs. There is a group of factors that play important role in detecting the stabilizing effect of stabilizers on DBPs such as energy gap, charge density on the o‐position of the benzene ring and the net charge on the benzene ring itself.  相似文献   

3.
The incorporation of nano‐scaled cyclotrimethylene trinitramine (nRDX) in nitrocellulose (NC)‐based propellants poses processing problems when following conventional methods. Hence, a new preparation method containing a pre‐dispersion process was developed, by which 30 mass % RDX (290 nm) was incorporated in the propellant. Meanwhile, the corresponding 290 nm, 12.85 μm and 97.76 μm RDX‐based propellants were prepared for comparison using a conventional method. The morphology, structure, ballistic and mechanical properties of the prepared propellants were characterized by scanning electron microscopy (SEM), density analyzer, closed vessel (CV), uniaxial tensile tester and impact tester. The results indicate that the nRDX particles were uniformly dispersed in the NC/NG/TEGDN matrix using the novel method, while agglomerated and recrystallized into large particles with the conventional method. The propellant density increased with decreasing RDX particle size. In particular, the 290 nm RDX‐based propellant exhibited a higher burning rate and lower average pressure exponent (α =0.958) compared to the 12.85 μm RDX‐based propellant (α =1.043). The tensile strength, elongation at break and impact strength of the RDX‐based propellant at −40 °C, 20 °C and 50 °C were dramatically improved by using 290 nm RDX with the novel method.  相似文献   

4.
Foaming properties of the three NC‐based (nitrocellulose‐based) propellants, namely, single‐base propellant, NG (nitroglycerine) propellant and TEGDN (triethylene glycol dinitrate) propellant were investigated in the batch foaming process by using supercritical CO2 as the physical foaming agent. Burning characteristics of the foamed NC‐based propellants were also investigated in this work. For this study, the CO2 desorption of the three NC‐based propellants were plotted by the gravimetric method. The morphology and burning characteristics of these foamed NC‐based propellants were characterized by scanning electron microscope (SEM) and closed vessel experiment. The test data revealed that the energetic plasticizer has a considerable effect on the pore formation in the NC matrix although it has little effect on the CO2 solubility in the NC‐based propellants. Moreover, the SEM images showed the foaming temperature also plays an important role in the pore parameters of foamed propellants. Furthermore, the data of closed vessel experiment indicated that the burning characteristics of foamed NC‐based propellants largely depend on the pore parameters, and the porous structure of foamed propellants would considerably increase the mass conversion rate.  相似文献   

5.
Mechanically‐activated nanocomposites (MANCs) of nano‐aluminum (nAl)/X (X=Cu, Ni, Zn, Mg, and graphite) were used as replacements for reference nAl powder and as catalytic ingredients in polyurethane (PU) propellants. The effects of their use on combustion heat, burning rate, and thermal decomposition were investigated. It was found that MANCs have catalytic effects and the modified propellants have enhanced the released heat, burning rate, and thermal decomposition properties. MANCs‐based propellants have improved the processing and the mechanical properties with acceptable safety aspects. They can be used for catalytic applications in solid propellants to improve their energetic, burning rate, and thermal decomposition characteristics.  相似文献   

6.
Ammonium dinitramide (ADN), NH4N(NO2)2 is being considered as one of the potential new energetic oxidizers for composite propellants. In this study, ADN crystals, prills and two ADN‐based propellants having different relative amounts of ingredients were characterized. The concentration of the crystals and the prills samples was determined using ion chromatography. The thermal behavior of the crystals, prills and propellants was studied using DSC, simultaneous TG‐DTA‐FTIR‐MS, ARC (accelerating rate calorimeter), HFC (heat flux calorimeter) and INC (isothermal nanocalorimeter). Decomposition of ADN was observed from all of the samples at temperatures above the melting point of ADN (~ 92 °C). Formation of N2O, NO2, H2O, CO2, CO, N2 and NO was detected during the ADN decomposition. The thermal stability of the ADN samples at temperatures below the melting point of ADN was studied. Early solid decomposition of ADN, which generates N2O and H2O, was observed at 60 °C. Electrostatic discharge (ESD) and impact sensitivity of the ADN samples were determined. The crystals and prills are sensitive to impact, while the two propellants are relatively less ESD and impact sensitive.  相似文献   

7.
Ammonium nitrate (AN)‐based composite propellants have several major problems, namely, a low burning rate, poor ignitability, low energy, and high hygroscopicity. The addition of a burning catalyst proved to be effective in improving the burning characteristics of AN‐based propellants. In this study, the burning characteristics of AN‐based propellants supplemented with MnO2 as a burning catalyst were investigated. The addition of MnO2 is known to improve the ignitability at low pressure. The most effective amount of MnO2 added (ξ) for increasing the burning rate is found to be 4 %. The increasing ratio with ξ is virtually independent of the burning pressure and the AN content. However, the pressure exponent unfortunately increased by addition of MnO2. The apparent activation energy of the thermal decomposition for AN and the propellant is decreased by addition of MnO2. From thermal decomposition kinetics it was found that MnO2 could accelerate the thermal decomposition reaction of AN in the condensed phase, and therefore, the burning characteristics of the AN‐based propellant are improved.  相似文献   

8.
The effects of porous structure on the burning characteristics of foamed NC‐based (nitrocellulose‐based) gun propellants were investigated by closed vessel and quenched combustion experiments. The foamed NC‐based TEGDN (triethylene glycol dinitrate) gun propellants with different porous structures were prepared by adjusting the process parameters in the foaming process. SEM (scanning electron microscopy) was used to observe the morphologies of foamed TEGDN propellants, and the densities of the foamed propellants were also measured to evaluate the porosities of foamed propellants. The experimental results showed that the burning characteristics of the novel foamed propellants are totally different from combustion characteristics of parallel‐layer. Further investigations revealed that the burning characteristics of the foamed NC‐based propellants largely depend on the porous structure, larger pores and higher porosity would lead to higher burning rate of the foamed TEGDN propellants.  相似文献   

9.
Study on thermal behavior of 3‐nitro‐1,2,4‐triazol‐5‐one (NTO) salts was required to obtain important data for application purposes. These compounds have been shown to be useful intermediates for gun propellant ingredients, high energetic ballistic modifiers for solid propellants and other potential applications. In this paper, thermal decomposition and non‐isothermal kinetics of melamine 3‐nitro‐1,2,4‐triazol‐5‐one salt (MNTO) were studied under non‐isothermal conditions by DSC and TG methods. The kinetic parameters were obtained from analysis of the DSC and TG curves by Kissinger and Ozawa methods. The critical temperature of thermal explosion (Tb) was 574 K. The results show that MNTO is thermally more stable than NTO when compared in terms of the critical temperature of thermal explosion. Finally, the values of ΔS#, ΔH#, and ΔG# of its decomposition reaction were calculated.  相似文献   

10.
Enhanced burning of plasma‐ignited propellants has been deduced in recent years from closed bomb pressure traces. The question remains, however, whether the enhanced burning is inherent or possibly the result of propellant grain fracture. To find out, interrupted and non‐interrupted burning tests were conducted with cylindrical perforated grains of JA2 and M30 in a closed bomb with a loading density of approximately 0.2 g/cm3. Both, conventional black powder and plasma igniters were used, and a few tests were carried out with the propellants cooled to −20 °C. The plasma igniter was an ablating capillary, and the electrical energy density was about 0.7 kJ/g of propellant. The diameters of the collected grains yielded the actual burn distance at the time of the interrupted burning. The experimental pressure traces and the conventional burn rate coefficients of the propellants were used to calculate the theoretical depth burned assuming no plasma‐induced burn rate modifications. From overlapping pressure traces at several interrupted pressures, and from comparison to the calculated versus measured burn distances, it was found that there is burn rate enhancement during the plasma pulse–but not much once the pulse has ended. In contrast to the JA2 burn rates, both ambient and cold M30 burn rates, deduced from the non‐interrupted tests using the BRLCB code, were enhanced even after the plasma turn‐off, thus contradicting the interrupted‐tests results. However, vivacity analysis of the non‐interrupted tests indicated that the M30 grains exhibited increased surface area (possible fragmentation) because of the plasma interaction–an effect that would cause erroneous results from the BRLCB. Indeed, simulation of the non‐interrupted M30 tests using the XNOVAKTC code, and assuming partial fragmentation of the propellant charge, yielded vivacities that mimicked the experimental ones.  相似文献   

11.
Currently formulated propellants comprise RDX and polymeric binders, such as hydroxy‐terminated polybutadiene (HTPB) and cellulose‐acetate butyrate (CAB) as well as the energetic substances glycidyl azide polymer (GAP) and nitrocellulose (NC). Propellants based on GAP are often brittle if they are formulated with a high content of cyclotrimethylene trinitramine (RDX) and due to the usually insufficient mechanical properties of GAP. On the other hand formulations based on RDX and NC may exceed the tolerable burning temperature with increasing RDX concentration. Therefore, in this study propellants with a high force and with relatively low burning temperature has been formulated by using a compound of NC and GAP as energetic binder. According to thermodynamic calculations GAP/NC composite propellants can be formulated with up to 15 percent more specific energy than seminitramines at the same burning temperature. By choosing appropriate polymerization conditions chemical stable compositions can be produced. ARC experiments give evidence that at temperatures from 120°C to 160°C the binder decomposes similar to NC. At higher temperatures the behaviour switches from NC type to GAP type decomposition. In comparison to GAP bound propellants the compressive strength of propellants bound by the GAP/NC compound can be significantly increased by up to 420 percent at room temperature. Although the examined seminitramine propellants bound with NC show a compressive strength which is about 10 percent higher at room temperature, the GAP/NC compositions are quite superior at elevated temperature.  相似文献   

12.
Perfusion explosives were prepared using foamed SF‐3 propellants, which were synthesized by a two‐stage batch foaming process with different saturation time in supercritical fluid CO2 as a foaming agent. The foamed SF‐3 propellants were characterized by scanning electron microscopy (SEM). Underwater detonation tests and test‐board detonation tests were carried out to investigate detonation performance of the prepared perfusion explosives. Results showed that more saturation time during the foaming process leads to more pores and cracks. Perfusion explosives prepared using foamed SF‐3 propellants exhibited much higher shock wave energy and stronger damage effectiveness than those using unfoamed SF‐3 propellants. Perfusion explosives prepared using foamed SF‐3 propellants with a saturation time of 2 h exhibited the highest shock wave energy and damage effectiveness, which decreased as the saturation time increased.  相似文献   

13.
The effect of N‐methyl‐2‐(3‐nitrophenyl)pyrrolidino[3′,4′:1,2]fullerene (mNPF) on the decomposition characteristics of hexogen (RDX) was investigated using differential scanning calorimetry (DSC). The results show that mNPF can accelerate the decomposition of RDX, the peak temperature (Tp) of the exothermal decomposition is reduced by 6.4 K, and the corresponding apparent activation energy (Ea) is decreased by 8.7 kJ mol−1. N‐methyl‐2‐(3‐nitrophenyl)pyrrolidino[3′,4′:1,2]fullerene (mNPF), carbon black (CB), and C60 were used as combustion catalysts to improve the combustion performance of a composite modified double‐base propellant containing RDX (RDX‐CMDB). The burning rate experimental results show that mNPF has a stronger catalytic effect than C60 and CB. The magnitude of the effect of the three carbon substances on the enhancement of the burning rate is as follows: mNPF>C60>CB. The catalytic effects of different contents of mNPF on the burning rates of RDX‐CMDB propellants were also studied, and the results show that the burning rates of RDX‐CMDB propellants are improved with increasing mNPF content. The plateau burning rate of a RDX‐CMDB propellant can be increased to 19.6 mm s−1 when 1.0 % mNPF is added, and the corresponding plateau combustion region occurs at 8–22 MPa.  相似文献   

14.
Composite rocket propellants prepared from nitramine fillers (RDX or HMX), glycidyl azide polymer (GAP) binder and energetic plasticizers are potential substitutes for smokeless double‐base propellants in some rocket motors. In this work, we report GAP‐RDX propellants, wherein the nitramine filler has been partly or wholly replaced by 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7). These smokeless propellants, containing 60% energetic solids and 15% N‐butyl‐2‐nitratoethylnitramine (BuNENA) energetic plasticizer, exhibited markedly reduced shock sensitivity with increasing content of FOX‐7. Conversely, addition of FOX‐7 reduced the thermochemical performance of the propellants, and samples without nitramine underwent unsteady combustion at lower pressures (no burn rate catalyst was added). The mechanical characteristics were quite modest for all propellant samples, and binder‐filler interactions improved slightly with increasing content of FOX‐7. Overall, FOX‐7 remains an attractive, but less than ideal, substitute for nitramines in smokeless GAP propellants.  相似文献   

15.
Six copper(II) and lead(II) salts of p‐nitrocalix[n]arene (n=4, 6, 8) were synthsized and characterized. The DSC curves of all salts showed exothermic decomposition. Sensitivity studies revealed that all the salts with the exception of the lead salt of p‐nitrocalix[6]arene (NCPb6) are relatively insensitive materials. Investigations of the catalytic activities showed that most of the salts displayed high activities in thermal decomposition of NC‐NG and RDX. As evaluated in this work, the salts enhanced the burning rates of both double base (DB) and RDX‐component modified double base propellants. The best catalytic effect was obtained with NCPb6, which increased the burning rate of the DB propellant to the order of about 200 % (2–6 MPa) and 103–198 % (8–20 MPa) while decreasing the pressure index (n) to 0.22 (20–22 MPa).  相似文献   

16.
For the calculation of the performance parameters of combustion processes, equilibrium thermodynamic processes are taken into account. On the other hand, non‐equilibrium reactions occur, mostly connected with low pressure burning. In this paper, several explosives, explosive mixtures, solid and liquid propellants have been calculated. It is shown how energy output and gas formation depend on the oxygen balance and the enthalpy of formation. It was found that the reason for the higher specific energy of liquid propellants is due to the increased formation of gases consisting of H2, N2 and H2O, compared with conventional solid propellants based on nitrocellulose and nitroglycerin, which produce more CO and CO2. Non‐equilibrium combustion of solid propellants was found at very low loading densities or pressures lower than 1 to 2 MPa. In this case, the reaction products measured by mass spectrometry, such as NO, N2O and HCN, are metastable and highly toxic, producing a much lower heat of explosion compared with equilibrium burning measured and calculated.  相似文献   

17.
The effects of Irganox 1010 and citric acid as antioxidants and modifiers of the network structure and mechanical and thermal properties of low‐density polyethylene (LDPE) during electron‐beam crosslinking with different irradiation doses (up to 120 kGy) were investigated. The results showed that the addition of these stabilizers had a retarding effect on the gel fraction of LDPE within the investigated range of electron‐beam‐irradiation doses. However, a noticeable effect on the gel fraction was found for the LDPE formulations compounded with citric acid alone or with its mixture with Irganox 1010 (in an equal ratio), as illustrated by a study of the gel‐fraction/dose relationships. Tensile testing measurements showed that the addition of both stabilizers caused a slight reduction in the stress at break and an increase in the strain at break. On the other hand, the thermal properties of the LDPE batches crosslinked with electron‐beam irradiation were greatly improved as a result of the compounding with these stabilizers, as shown by thermogravimetric analysis studies. In this respect, the temperatures at different weight losses, the temperatures of the maximum rate of thermal decomposition, and the activation energies indicated that compounding with citric acid was more effective for stabilization against thermal decomposition than compounding with Irganox alone or a mixture. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1275–1286, 2005  相似文献   

18.
Ammonium nitrate (AN)‐based composite propellants have attracted a considerable amount of attention because of the clean burning nature of AN as an oxidizer. However, such propellants have several disadvantages such as poor ignition and a low burning rate. In this study, the burning characteristics of AN‐based propellants supplemented with Fe2O3 as a burning catalyst were investigated. The addition of Fe2O3 is known to improve the ignitability at low pressure. Fe2O3 addition also increases the burning rate, while the pressure exponent generally decreases. The increasing ratio (R) of the burning rate of the AN/Fe2O3 propellant to that of the corresponding AN propellant vs. the amount of Fe2O3 added (ξ) depends on the burning pressure and AN content. R decreases at threshold value of ξ. The most effective value of ξ for increasing the burning rate was found to be 4 % for the propellant at 80 % AN, and the value generally decreased with decreasing AN content. According to thermal decomposition kinetics, Fe2O3 accelerates the reactions of AN and binder decomposition gases in the condensed‐ and/or gas‐phase reaction zones. The burning characteristics of the AN‐based propellant were improved by combining catalysts with differing catalytic mechanisms instead of supplementing the propellant with a single catalyst owing to the multiplicative effect of the former.  相似文献   

19.
Perfusion explosives were prepared using porous SF‐3 propellants, which were synthesized by a supercritical fluid foaming process. Scanning electron microscopy (SEM) was used to characterize the porous SF‐3 propellants. Massive holes were generated after the foaming process. The density of perfusion explosives using foamed SF‐3 propellants exceeds 1.3 g cm−3, and the detonation velocities exceed 6000 m s−1. Underwater energy tests and high‐speed photography were carried out to investigate the detonation performance of perfusion explosives. The results showed that perfusion explosives using unfoamed SF‐3 propellants could not be detonated. However, perfusion explosives using their foamed analogs could be detonated herein.  相似文献   

20.
The burning rate pressure relationship is one of the important criteria in the selection of the propellant for particular applications. The pressure exponent (η) plays a significant role in the internal ballistics of rocket motors. Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/AP/Al‐ and NG/PE‐PCP/HMX/AP/Al‐based solid rocket propellants processed by a conventional slurry cast route were carried out. The objective of present study was to understand the effectiveness of various ballistic modifiers viz. iron oxide, copper chromite, lead/copper oxides, and lead salts in combination with carbon black as a catalyst on the burning rate and pressure exponent of these high‐energy propellants. A 7–9 % increase in the burning rates and almost no effect in pressure exponent values of propellant compositions without nitramine were observed. However, in case of nitramine‐based propellants as compared to propellant compositions without nitramines, slight increases of the burning rates were observed. By incorporation of ballistic modifiers, the pressure exponents can be lowered. The changes in the calorimetric values of the formulations by addition of the catalysts were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号