首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The objective of this research article is to compare the mechanical and tribological properties of jute‐glass‐fiber‐reinforced epoxy (J‐G‐E) hybrid composites with and without fly ash particulate filler. A dry hand lay‐up technique is used to fabricate all the laminates. The properties including flexural strength, tensile strength, flexural modulus, and erosion behavior of all the composites are evaluated as per American Society for Testing and Materials (ASTM) standards. The fly ash particulate‐filled hybrid composite shows a better mechanical and tribological property. The maximum flexural strength and flexural modulus are obtained for GJGJ+ 5 wt% fly ash filler epoxy composites. Whereas the maximum tensile strength is obtained for GJJG+ 10 wt% fly ash filler epoxy composites. Scanning Electron Microscopy (SEM) analysis also has been carried out to categorize mechanical and tribological behavior of composites. POLYM. COMPOS. 37:658–665, 2016. © 2014 Society of Plastics Engineers  相似文献   

2.
The effect of the dispersion, ozone treatment and concentration of cup-stacked carbon nanotubes on mechanical, electrical and thermal properties of the epoxy/CSCNT nanocomposites were investigated. Ozone treatment of carbon fibers was found to increase the surface oxygen concentration, thereby causing the contact angle between water, epoxy resin and carbon fiber to be decreased. Thus, the tensile strength, modulus and the coefficient friction of carbon fiber reinforced epoxy resin were improved. Moreover, the dispersion of fibers in polymer was increased and the electrical resistivity was decreased with the addition of filler content. The dynamic mechanical behavior of the nanocomposite sheets was studied. The storage modulus of the polymer was increased by the incorporation of CSCNTs. But the glass transition temperature decreased with increasing fiber loading for the ozone treated fiber composites. The ozone treatment did affect the morphology, mechanical and physical properties of the CSCNT.  相似文献   

3.
Filler mixtures of defatted soy flour (DSF) and carbon black (CB) were used to reinforce natural rubber (NR) composites and their viscoelastic properties were investigated. DSF is an abundant and renewable commodity and has a lower material cost than CB. Aqueous dispersions of DSF and CB were first mixed and then blended with NR latex to form rubber composites using freeze‐drying and compression molding methods. A 40% co‐filler reinforced composite with a 1 : 1 DSF : CB ratio exhibited a 90‐fold increase in the rubber plateau modulus compared with unfilled NR, showing a significant reinforcement effect by the co‐filler. The effect, however, is lower than that observed in the carboxylated styrene–butadiene rubber composites reported earlier, indicating a significant effect from the rubber matrix. The co‐filler composites have elastic moduli between those of DSF and CB reinforced composites. Stress softening and recovery experiments indicated that the co‐filler composites with a higher CB content tend to have a better recovery behavior; however, this can not be simply explained from the recovery behaviors of the single filler (DFS and CB) composites. CB composites prepared by freeze‐drying show a strain‐induced reorganization of fillers. Strain sweep experiment data fit with the Kraus model indicates the co‐filler composites with a higher CB content are more elastic, which is consistent with the recovery experiments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Multi‐walled carbon nanotubes (CNTs) and cellulose nanofibers (CNFs) reinforced shape memory polyurethane (PU) composite fibers and films have been fabricated via extrusion and casting methods. Cellulose nanofibers were obtained through acid hydrolysis of microcrystalline cellulose. This treatment aided in achieving stable suspensions of cellulose crystals in dimethylformamide (DMF), for subsequent incorporation into the shape memory matrix. CNTs were covalent functionalized with carboxyl groups (CNT‐COOH) and 4,4′‐methylenebis (phenylisocyanate) (MDI) (CNT‐MDI) to improve the dispersion efficiency between the CNT and the polyurethane. Significant improvement in tensile modulus and strength were achieved by incorporating both fillers up to 1 wt% without sacrificing the elongation at break. Electron microscopy was used to investigate the degree of dispersion and fracture surfaces of the composite fibers and films. The effects of the filler (type and concentration) on the degree of crystallinity and thermal properties of the hard and soft segments that form the PU sample were studied by calorimetry. Overall, results indicated that the homogeneous dispersion of nanotubes and cellulose throughout the PU matrix and the strong interfacial adhesion between nanotubes and/or cellulose and the matrix are responsible for the enhancement of mechanical and shape memory properties of the composites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
At first, the impact of selected spherically structured nanofillers made of different polar materials (carbon, silicon carbide, surface‐modified silica, 2 wt % each) on mechanical properties of monomer cast polyamide 6 (MCPA6) was examined. Only the low‐polar carbon‐based nanofiller showed an average particle size below 100 nm in the liquid phase before polymerization was initiated. With regard to neat MCPA6, mechanical properties of the composite loaded with the carbon nanoparticles like tensile strength, Young's modulus, and heat distortion temperature could be improved by 6.4%, 13.5%, and 27.5%, respectively. The efficiency of carbon as filler material for MCPA6 was also shown for carbon short‐cut fibers. A fiber content of 15% improved tensile strength from 78 to 93 MPa (19%) and Young's modulus could be doubled from 2660 MPa to nearly 5300 MPa. Regardless of the improved mechanical properties, the composites showed reduced degrees of crystallinity. Therefore, electron beam irradiation was applied to crosslink the polymer chains as an alternative to improve material properties. Crosslinking was supported by the application of a curing agent (CA). Two strategies for crosslinking experiments were tested: (1) Irradiation of CA‐containing neat MCPA6 to find the most effective dose and subsequent treatment of the composites under this special condition; (2) Optimization of the properties by irradiation of the composites itself at graduated dose values. The second way was more convenient and showed, with regard to the composites without CA, improvements of tensile strength and Young's modulus of 6% each. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
This study aims to examine the morphology and mechanical properties (tensile, flexural, and compressive) of epoxy composites reinforced with epoxy date palm leaves (EDPL), epoxy date palm branch (EDPB), and epoxy/hardener date palm core shell (EDPC) fibers (particle size <1 μm depend on the date palm fibers). A three-step technique was used to obtain the composites. The EDPL composites showed a maximum tensile strength of 3.45 MPa, while the EDPB composites showed maximum compressive and flexural rigidity of 9.46 and 5.55 MPa, respectively, owing to the good compatibility of fiber-matrix bonding. In this work, epoxy composites reinforced with date palm fibers (DPF) leaves, branches, and core shell were recycled using a cost-effective and easily reproducible three-step technique. EDPC fibers fabricated with 64.65% weight carbon fibers content demonstrated improved tensile strengths and stiffness properties. The three samples of palm date composites revealed mechanical properties that could be used to trial these fibers for manufacturing purposes, and to exploit their extraordinary mechanical properties shown in current results.  相似文献   

7.
The objectives of this research article is to evaluate the mechanical and tribological properties of glass‐fiber‐reinforced epoxy (G–E) composites with and without graphite particulate filler. The laminates were fabricated by a dry hand layup technique. The mechanical properties, including tensile strength, tensile modulus, elongation at break, and surface hardness, were investigated in accordance with ASTM standards. From the experimental investigation, we found that the tensile strength and dimensional stability of the G–E composite increased with increasing graphite content. The effect of filler content (0–7.5 wt %) and sliding distance on the friction and wear behavior of the graphite‐filled G–E composite systems were studied. Also, conventional weighing, determination of the coefficient of friction, and examination of the worn surface morphological features by scanning electron microscopy (SEM) were done. A marginal increase in the coefficient of friction with sliding distance for the unfilled composites was noticed, but a slight reduction was noticed for the graphite‐filled composites. The 7.5% graphite‐filled G–E composite showed a lower friction coefficient for the sliding distances used. The wear loss of the composites decreased with increasing weight fraction of graphite filler and increased with increasing sliding distance. Failure mechanisms of the worn surfaces of the filled composites were established with SEM. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2472–2480, 2007  相似文献   

8.
Epoxy polymers are commonly utilized in structural applications due to their high bearing capacity and excellent chemical resistance. However, their inherent brittleness poses a significant challenge for their use in high shock and fracture strength products. To address this shortcoming, fillers can be incorporated into the polymer during preparation. In this study, we aimed to investigate the effect of incorporating cellulose-based fillers, namely cellulose nanocrystals (CNCs) and microcrystalline cellulose (MCC), on the mechanical properties of epoxy polymer composites. The study evaluated the impact of various factors, including filler concentration, particle size, and moisture content, on the mechanical properties of the composites. The results demonstrated that the incorporation of CNC or MCC powders at concentrations below 5% could enhance the mechanical properties of the resulting epoxy composites without adversely affecting their surface and thermal properties. The maximum tensile strength and fracture toughness of the filler-based epoxy composites were achieved at 2 and 4 wt% for CNCs and MCC, respectively. CNCs with a smaller particle size distribution were found to be much more effective than MCC in improving the mechanical properties of the epoxy composites. Furthermore, utilizing dried fillers resulted in a higher improvement in tensile strength, which was achieved at lower filler concentrations.  相似文献   

9.
The aim of the present study was to investigate the physical and thermo-mechanical characterization of silicon carbide filled needle punch nonwoven jute fiber reinforced epoxy composites. The composite materials were prepared by mixing different weight percentages (0–15 wt.%) of silicon carbide in needle punch nonwoven jute fiber reinforced epoxy composites by hand-lay-up techniques. The physical and mechanical tests have been performed to find the void content, water absorption, hardness, tensile strength, impact strength, fracture toughness and thermo-mechanical properties of the silicon carbide filled jute epoxy composites. The results indicated that increase in silicon carbide filler from 0 to 15 wt.% in the jute epoxy composites increased the void content by 1.49 %, water absorption by 1.83 %, hardness by 39.47 %, tensile strength by 52.5 %, flexural strength by 48.5 %, and impact strength by 14.5 % but on the other hand, decreased the thermal conductivity by 11.62 %. The result also indicated that jute epoxy composites reinforced with 15 wt.% silicon carbide particulate filler presented the highest storage modulus and loss modulus as compared with the unfilled jute epoxy composite.  相似文献   

10.
Multiwall carbon nanotubes (MWNTs) were modified by three methods, namely, oxidizing the tubes and opening both ends, filling the tubes with Ag, and grafting the tubes with hexamethylene diamine. Modified MWNTs/epoxy composites were prepared by melt‐mixing epoxy resin with the tubes. Transmission electron microscope images showed that the modified MWNTs can be dispersed in the epoxy matrix homogeneously. The dielectric behaviors and mechanical properties of the composites were investigated. The dielectric and mechanical properties of the modified MWNTs/epoxy composites were considerably improved compared with those of the epoxy matrix. The tensile strengths of the Ag‐filled, opened, and grafted MWNTs composites at the same filler content of 1.1 wt% were higher by ~30.5%, 35.6%, and 27.4%, respectively, than that of neat epoxy. The Izod notched impact strength of the grafted MWNTs/epoxy composite with filler content of 1.1 wt% was approximately four times higher than that of neat epoxy. A dielectric constant of ~150 of the composite with 1.1 wt% Ag‐filled nanotubes was observed in the low‐frequency range, which was ~40 times higher than that of the epoxy matrix. The proper modification of nanotubes provides a way to improve the properties of the polymer‐based composites. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

11.
Fiber‐reinforced polymeric composites (FRPCs) have emerged as an important material for automotive, aerospace, and other engineering applications because of their light weight, design flexibility, ease of manufacturing, and improved mechanical performance. In this study, glass‐epoxy (G‐E) and silicon carbide filled glass‐epoxy (SiC‐G‐E) composite systems have been fabricated using hand lay‐up technique. The mechanical properties such as tensile strength, tensile modulus, elongation at break, flexural strength, and hardness have been investigated in accordance with ASTM standards. From the experimental investigations, it has been found that the tensile strength, flexural strength, and hardness of the glass reinforced epoxy composite increased with the inclusion of SiC filler. The results of the SiC (5 wt %)‐G‐E composite showed higher mechanical properties compared to G‐E system. The dielectric properties such as dielectric constant (permittivity), tan delta, dielectric loss, and AC conductivity of these composites have been evaluated. A drastic reduction in dielectric constant after incorporation of conducting SiC filler into epoxy composite has been observed. Scanning electron microscopy (SEM) photomicrographs of the fractured samples revealed various aspects of the fractured surfaces. The failure modes of the tensile fractured surfaces have also been reported. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Epoxy‐based composites containing sodium montmorillonite (MMT) modified by silylation reaction with 3‐aminopropyltriethoxysilane (A1100) and N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (A1120) were prepared. The effect of MMT chemical functionalization, as well as inorganic content and dispersion method (i.e., sonication or combination of sonication and ball‐milling) on the morphology and mechanical and thermal properties of composites was thoroughly investigated by X‐ray diffraction analysis, dynamic mechanical and tensile static analysis, nanoindentation measurements and cone calorimeter tests. Morphological characterization showed that the MMT particles are only slightly intercalated by epoxy molecules. Tensile stress, elongation at failure, and toughness of the epoxy composites based on silylated MMT were found to be improved. The presence of 1 and 3% wt/wt of A1100 and A1120 silylated MMT clays allowed the tensile elastic modulus to increase respectively, of about 10 and 15% with respect to the pristine epoxy matrix. The overall results showed that (1) the silylation of MMT clays is a valuable method to improve the interfacial interaction between filler and epoxy matrix and (2) the interfacial interaction plays a role more significant than the clay morphology (i.e., the extent of clay intercalation/exfoliation) over the composite properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Natural‐rubber‐based hybrid composites were prepared by the mixture of short cellulose fibers and silica of different relative contents with a 20‐phr filler loading with a laboratory two‐roll mill. The processability and tensile properties of the hybrid composites were analyzed. The tensile modulus improved, but the tensile strength and elongation at break decreased with increasing cellulose fiber content. The scorch safety improved with the addition of 5‐phr cellulose fiber in the composites. The Mooney viscosity significantly decreased with increasing cellulose fiber content. To modify the surface properties of the cellulose fiber and silica fillers, a silane coupling agent [bis(triethoxysilylpropyl)tetrasulfide, or Si69] was used. The effects of Si69 treatment on the processing and tensile properties of the hybrid composites were assessed. We found that the silane treatment of both fillers had significant benefits on the processability but little benefit on the rubber reinforcement. The strength of the treated hybrid composite was comparable to that of silica‐reinforced natural rubber. Furthermore, to investigate the filler surface modification and to determine the mixing effects, infrared spectroscopic and various microscopic techniques, respectively, were used. From these results, we concluded that the fillers were better dispersed in the composites, and the compatibility of the fillers and natural rubber increased with silane treatment. In conclusion, the hybridized use of short cellulose fibers from a renewable resource and silica with Si69 presented in this article offers practical benefits for the production of rubber‐based composites having greater processability and more environmental compatibility than conventional silica‐filler‐reinforced rubber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Epoxy, prepared through aminomethyl 3,5,5‐trimethylcyclohexylamine hardening of diglycidylether of bisphenol‐A (DGEBA) prepolymer, toughened with polycarbonate (PC) in different proportions, and reinforced with carbon fiber, was investigated by differential scanning calorimetry, tensile and interlaminar shear strength testing, and scanning electron microscopy (SEM). A single glass transition temperature was found in all compositions of the epoxy/PC blend system. The tensile properties of the blend were found to be better than that of the pure epoxy matrix. They increased with PC content up to 10%, beyond which they decreased. The influence of carbon fiber orientation on the mechanical properties of the composites was studied, where the fiber content was kept constant at 68 wt %. Composites with 45° fiber orientation were found to have very weak mechanical properties, and the mechanical properties of the blend matrix composites were found to be better than those of the pure epoxy matrix composites. The fracture and surface morphologies of the composite samples were characterized by SEM. Good bonding was observed between the fiber and matrix for the blend matrix composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3529–3536, 2006  相似文献   

15.
Electrospun functionalized polyacrylonitrile grafted glycidyl methacrylate (PAN‐g‐GMA) nanofibers are incorporated between the plies of a conventional carbon fiber/epoxy composite to improve the composite's mechanical performance. Glycidyl methacrylate (GMA) is successfully grafted onto polyacrylonitrile (PAN) polymer powder via a free radical mechanism. Characterization of the electrospun PAN and PAN‐g‐GMA nanofibers indicates that the grafting of GMA does not significantly alter the tensile properties of the PAN nanofibers but results in an increase in the diameter of nanofibers. Statistical analysis of the mechanical characterization studies on PAN‐carbon/epoxy hybrid composites conclusively shows that the composite reinforced with functionalized PAN nanofibers has greater mechanical properties than that of both the neat PAN nanofiber enriched hybrid composite and control composite (without nanofibers). The improved performance is attributed to the grafted glycidyl groups on PAN, leading to stronger interactions between the nanofibers and the epoxy matrix. PAN‐g‐GMA nanofiber reinforced composite outperforms their neat PAN counterparts in tensile strength, short beam shear strength, flexural strength, and Izod impact energy absorption by 8%, 9%, 6%, and 8%, respectively. Compared to the control composite, the improvements resulting from the PAN‐g‐GMA nanofiber incorporation are even more pronounced at 28%, 41%, 32%, and 21% in the corresponding tests, respectively.

  相似文献   


16.
The aggregate structure of phthalic anhydride (PA) modified soy protein isolate (SPI) was investigated by estimating its fractal dimension from the equilibrated dynamic strain sweep experiments. The estimated fractal dimensions of the filler aggregates were less than 2, indicating that these particle aggregates have a distorted or broken two‐dimensional sheet‐like structure. The results also indicated that the aggregate structure has a greater effect on the composite reinforcement than the overall aggregate size. Tensile strength, elongation, Young's modulus, and toughness of hydrolyzed/modified soy composites are comparable with those of carbon black reinforced composites at 10–15% filler fraction. The moduli of PA‐modified SPI composites were less sensitive to the pH of the composite preparation compared to the unmodified SPI. The composites prepared at acidic pH, with lower filler fraction, or filled with hydrolyzed/modified SPI are more elastic and less fatigue. The composites of PA‐modified SPI had better recovery properties when prepared at acidic instead of alkali pH. PA‐modified hydrolyzed SPI composites prepared at acidic pH showed a similar recovery property to that of carbon black reinforced composites, but with greater shear elastic moduli. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Biomass carbon (BC) and soy protein (SP) were used to reinforce natural rubber (NR) biocomposites. The particle size of BC was reduced and characterized with elemental analysis, X‐ray diffraction, infrared spectroscopy, and particle size analysis. The rubber composite reinforced with the BC/SP and the composite reinforced with the BC of higher carbon content show useful tensile properties at an optimum filler fraction. The model analysis of the stress–strain behaviors provides insight into filler network characteristics. For the highly filled composites, the BC have less constraint on the polymer chains as shown by the temperature and frequency dependent modulus as well as the model analysis of stress softening effect. The presence of NR protein improves the filler–polymer adhesion for the composites reinforced with BC/SP. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
Natural rubber was enhanced with soy protein nano‐aggregates and carbon black using a hybrid process. The rubber composites reinforced with an optimum amount of soy protein or soy protein/carbon black showed useful tensile properties. The stress‐strain behaviors were analyzed with a micro‐mechanical model that describes the stress–strain measurements well. The model analysis provides insight into filler network characteristics and entanglement modulus. The composites were also analyzed with both linear and nonlinear viscoelastic properties. Temperature and frequency dependent modulus as well as the model analysis of stress softening effect describe the ability of soy protein to constraint polymer chains in the highly filled composites. For the composites reinforced with soy protein, the good tensile properties are attributed to good filler‐polymer adhesion through the compatibilization effect of natural rubber protein. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2188–2197, 2013  相似文献   

19.
The main target of the current work was to study the mechanical properties of milled E‐glass, S‐glass, and high‐strength (carbon fiber)‐reinforced epoxy composites. At first, tensile behavior of the as‐received fibers was evaluated by conducting different tensile tests. Afterwards, the effects of employing an integral blended coupling agent on the performance of the pure epoxy were investigated by microhardness tests and optical microscopic images. Then, the epoxy composites were prepared simply by mixing and stirring 1, 3, and 5 wt% of the milled fibers with the epoxy resin and its hardener. The effects of mixture degassing and addition of the coupling agent to the mixture were examined based on the mechanical properties of the fabricated composites. Also, scanning electron microscope macro‐ and micrographs of the transverse and longitudinal fracture surfaces were used to study the fracture behavior and identify the active toughening mechanisms. The best results were obtained for the degassed and modified milled (carbon fiber epoxy)‐reinforced composite, which enhanced the tensile strength, elongation, Young's modulus, and toughness up to 12%, 17%, 19%, and 27%, respectively. The current study shows that the composite not only is cost effective but also offers better mechanical properties. J. VINYL ADDIT. TECHNOL., 24:130–138, 2018. © 2016 Society of Plastics Engineers  相似文献   

20.
In this study, carbon fiber–epoxy composites are interleaved with electrospun polyamide‐6,6 (PA 66) nanofibers to improve their Mode‐I fracture toughness. These nanofibers are directly deposited onto carbon fabrics before composite manufacturing via vacuum infusion. Three‐point bending, tensile, compression, interlaminar shear strength, Charpy impact, and double cantilever beam tests are performed on the reference and PA 66 interleaved specimens to evaluate the effects of PA 66 nanofibers on the mechanical properties of composites. To investigate the effect of nanofiber areal weight density (AWD), nanointerlayers with various AWD are prepared by changing the electrospinning duration. It is found that the electrospun PA 66 nanofibers are very effective in improving Mode‐I toughness and impact resistance, compressive strength, flexural modulus, and strength of the composites. However, these nanofibers cause a decrease in the tensile strength of the composites. The glass‐transition temperature of the composites is not affected by the addition of PA 66 nanofibers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45244.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号