首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simple SummaryMyostatin (Mstn) is a negative regulator of skeletal muscle mass, and its deletion leads to reduced mitochondrial function. However, the exact regulatory mechanism remains unclear. In this study, we used CRISPR/Cas9 to generate myostatin-knockout (Mstn-KO) mice via pronuclear microinjection. The skeletal muscle of Mstn-KO mice significantly increased, and the basal metabolic rate, muscle ATP synthesis, mitochondrial respiratory chain complex activity, tricarboxylic acid cycle (TCA), and thermogenesis decreased. In the muscle tissue of Mstn-KO mice, the expression of SIRT1 and pAMPK decreased, and the acetylation modification of PGC-1α increased. Furthermore, the treatment of isolated muscle cells from Mstn-KO and wild-type mice with AMPK activator (AICAR) and AMPK inhibitor (Compound C) found that Compound C down-regulated the expression of pAMPK and SIRT1 and the activity of citrate synthase (CS), isocitrate dehydrogenase (ICDHm) and α-ketoglutarate acid dehydrogenase (α-KGDH) similar to that of Mstn-KO. However, AICAR partially reversed the inhibitory effect of Mstn-KO on the expression of pAMPK and SIRT1 and activity of three enzymes. Thus, Mstn-KO affects mitochondrial function by inhibiting the AMPK/SIRT1/PGC1α signaling pathway.AbstractMyostatin (Mstn) is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes. The deletion of the Mstn gene in mice leads to reduced mitochondrial functions. However, the underlying regulatory mechanisms remain unclear. In this study, we used CRISPR/Cas9 to generate myostatin-knockout (Mstn-KO) mice via pronuclear microinjection. Mstn-KO mice exhibited significantly larger skeletal muscles. Meanwhile, Mstn knockout regulated the organ weights of mice. Moreover, we found that Mstn knockout reduced the basal metabolic rate, muscle adenosine triphosphate (ATP) synthesis, activities of mitochondrial respiration chain complexes, tricarboxylic acid cycle (TCA) cycle, and thermogenesis. Mechanistically, expressions of silent information regulator 1 (SIRT1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) were down-regulated, while peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) acetylation modification increased in the Mstn-KO mice. Skeletal muscle cells from Mstn-KO and WT were treated with AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR), and the AMPK inhibitor Compound C, respectively. Compared with the wild-type (WT) group, Compound C treatment further down-regulated the expression or activity of pAMPK, SIRT1, citrate synthase (CS), isocitrate dehydrogenase (ICDHm), and α-ketoglutarate acid dehydrogenase (α-KGDH) in Mstn-KO mice, while Mstn knockout inhibited the AICAR activation effect. Therefore, Mstn knockout affects mitochondrial function by inhibiting the AMPK/SIRT1/PGC1α signaling pathway. The present study reveals a new mechanism for Mstn knockout in regulating energy homeostasis.  相似文献   

2.
Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.  相似文献   

3.
Exposure to high altitude environment leads to skeletal muscle atrophy. As a hormone secreted by skeletal muscles after exercise, irisin contributes to promoting muscle regeneration and ameliorating skeletal muscle atrophy, but its role in hypoxia-induced skeletal muscle atrophy is still unclear. Our results showed that 4 w of hypoxia exposure significantly reduced body weight and gastrocnemius muscle mass of mice, as well as grip strength and the duration time of treadmill exercise. Hypoxic treatment increased HIF-1α expression and decreased both the circulation level of irisin and its precursor protein FNDC5 expression in skeletal muscle. In in vitro, CoCl2-induced chemical hypoxia and 1% O2 ambient hypoxia both reduced FNDC5, along with the increase in HIF-1α. Moreover, the decline in the area and diameter of myotubes caused by hypoxia were rescued by inhibiting HIF-1α via YC-1. Collectively, our research indicated that FNDC5/irisin was negatively regulated by HIF-1α and could participate in the regulation of muscle atrophy caused by hypoxia.  相似文献   

4.
β-Casomorphin-7 (BCM) is a degradation product of β-casein, a milk component, and has been suggested to affect the immune system. However, its effect on mucosal immunity, especially anti-tumor immunity, in cancer-bearing individuals is not clear. We investigated the effects of BCM on lymphocytes using an in vitro system comprising mouse splenocytes, a mouse colorectal carcinogenesis model, and a mouse orthotopic colorectal cancer model. Treatment of mouse splenocytes with BCM in vitro reduced numbers of cluster of differentiation (CD) 20+ B cells, CD4+ T cells, and regulatory T cells (Tregs), and increased CD8+ T cells. Administration of BCM and the CD10 inhibitor thiorphan (TOP) to mice resulted in similar alterations in the lymphocyte subsets in the spleen and intestinal mucosa. BCM was degraded in a concentration- and time-dependent manner by the neutral endopeptidase CD10, and the formed BCM degradation product did not affect the lymphocyte counts. Furthermore, degradation was completely suppressed by TOP. In the azoxymethane mouse colorectal carcinogenesis model, the incidence of aberrant crypt foci, adenoma, and adenocarcinoma was reduced by co-treatment with BCM and TOP. Furthermore, when CT26 mouse colon cancer cells were inoculated into the cecum of syngeneic BALB/c mice and concurrently treated with BCM and TOP, infiltration of CD8+ T cells was promoted, and tumor growth and liver metastasis were suppressed. These results suggest that by suppressing the BCM degradation system, the anti-tumor effect of BCM is enhanced and it can suppress the development and progression of colorectal cancer.  相似文献   

5.
6.
Doxorubicin (DOX) is a well-known and effective antineoplastic agent of the anthracycline family. But, multiple organ toxicities compromise its invaluable therapeutic usage. Among many toxicity types, nephrotoxicity is one of the major concerns. In recent years many approaches, including bioactive agents of natural origin, have been explored to provide protective effects against chemotherapy-related complications. α-Bisabolol is a naturally occurring monocyclic sesquiterpene alcohol identified in the essential oils of various aromatic plants and possesses a wide range of pharmacological properties such as antioxidant, anti-inflammatory, analgesic, cardioprotective, antibiotic, anti-irritant, and anticancer activities. The present study aimed to evaluate the effects of α-Bisabolol on DOX-induced nephrotoxicity in Wistar male albino rats. Nephrotoxicity was induced in rats by injecting a single dose of DOX (12.5 mg/kg, i.p.), and the test compound, α-Bisabolol (25 mg/kg) was administered intraperitoneally along with DOX as a co-treatment daily for 5 days. DOX-injected rats showed reduction in body weight along with a concomitant fall in antioxidants and increased lipid peroxidation in the kidney. DOX-injection also increased levels/expressions of proinflammatory cytokines namely tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and inflammatory mediators like inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and activated nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinases (MAPK) signaling in the kidney tissues. DOX also triggered apoptotic cell death, evidenced by the increased expression of pro-apoptotic markers like BCL2-Associated X Protein (Bax), cleaved caspase-3, caspase- 9, and cytochrome-C) and a decrease in the expressions of anti-apoptotic markers namely B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-extra large (Bcl-xL) in the kidney. These biochemical alterations were additionally supported by light microscopic findings, which revealed structural alterations in the kidney. However, treatment with α-Bisabolol prevented body weight loss, restored antioxidants, mitigated lipid peroxidation, and inhibited the rise in proinflammatory cytokines, as well as favorably modulated the expressions of NF-κB/MAPK signaling and apoptosis markers in DOX-induced nephrotoxicity. Based on the results observed, it can be concluded that α-Bisabolol has potential to attenuate DOX-induced nephrotoxicity by inhibiting oxidative stress and inflammation mediated activation of NF-κB/MAPK signaling alongwith intrinsic pathway of apoptosis in rats. The study findings are suggestive of protective potential of α-Bisabolol in DOX associated nephrotoxicity and this could be potentially useful in minimizing the adverse effects of DOX and may be a potential agent or adjuvant for renal protection.  相似文献   

7.
Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2β1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2β1 in the context of bone metastasis. In this study, we aimed to understand the role of α2β1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2β1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2β1 expression and bone-metastatic potential. Inhibiting α2β1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.  相似文献   

8.
Approximately 25% of colorectal cancer (CRC) patients develop peritoneal metastasis, a condition associated with a bleak prognosis. The CRC peritoneal dissemination cascade involves the shedding of cancer cells from the primary tumor, their transport through the peritoneal cavity, their adhesion to the peritoneal mesothelial cells (PMCs) that line all peritoneal organs, and invasion of cancer cells through this mesothelial cell barrier and underlying stroma to establish new metastatic foci. Exosomes produced by cancer cells have been shown to influence many processes related to cancer progression and metastasis. In epithelial ovarian cancer these extracellular vesicles (EVs) have been shown to favor different steps of the peritoneal dissemination cascade by changing the functional phenotype of cancer cells and PMCs. Little is currently known, however, about the roles played by exosomes in the pathogenesis and peritoneal metastasis cascade of CRC and especially about the molecules that mediate their interaction and uptake by target PMCs and tumor cells. We isolated exosomes by size−exclusion chromatography from CRC cells and performed cell-adhesion assays to immobilized exosomes in the presence of blocking antibodies against surface proteins and measured the uptake of fluorescently-labelled exosomes. We report here that the interaction between integrin α5β1 on CRC cells (and PMCs) and its ligand ADAM17 on exosomes mediated the binding and uptake of CRC-derived exosomes. Furthermore, this process was negatively regulated by the expression of tetraspanin CD9 on exosomes.  相似文献   

9.
10.
Mitophagy is a selective form of autophagy that removes damaged mitochondria. Increasing evidence indicates that dysregulated mitophagy is implicated in numerous autoimmune diseases, but the role of mitophagy in rheumatoid arthritis (RA) has not yet been reported. The aim of the present study was to determine the roles of mitophagy in patient-derived RA synovial fibroblasts (RASFs) and in the collagen antibody-induced arthritis mouse model. We measured the mitophagy marker PTEN-induced putative kinase 1 (PINK1) in RASFs treated with tumor necrosis factor-α (TNF-α) using Western blotting and immunofluorescence. Arthritis was induced in PINK1−/− mice by intraperitoneal injection of an anti-type II collagen antibody cocktail and lipopolysaccharide. RA severity was assessed by histopathology. PINK1 expression and damaged mitochondria increased in TNF-α treated RASFs via increased intracellular levels of reactive oxygen species. PINK1 knockdown RASFs decreased cellular migration and invasion functions. In addition, PINK1−/− mice with arthritis exhibited markedly reduced swelling and inflammation relative to wild-type mice with arthritis. Taken together, these findings suggest that regulation of PINK1 expression in RA could represent a potential therapeutic and diagnostic target for RA.  相似文献   

11.
Progressive loss and dysfunction of islet β-cells has not yet been solved in the treatment of diabetes. Regenerating protein (Reg) has been identified as a trophic factor which is demonstrated to be associated with pancreatic tissue regeneration. We previously produced recombinant Reg3α protein (rReg3α) and proved that it protects against acute pancreatitis in mice. Whether rReg3α protects islet β-cells in diabetes has been elusive. In the present study, rReg3α stimulated MIN6 cell proliferation and resisted STZ-caused cell death. The protective effect of rReg3α was also found in mouse primary islets. In BALB/c mice, rReg3α administration largely alleviated STZ-induced diabetes by the preservation of β-cell mass. The protective mechanism could be attributed to Akt/Bcl-2/-xL activation and GRP78 upregulation. Scattered insulin-expressing cells and clusters with small size, low insulin density, and exocrine distribution were observed and considered to be neogenic. In isolated acinar cells with wheat germ agglutinin (WGA) labeling, rReg3α treatment generated insulin-producing cells through Stat3/Ngn3 signaling, but these cells were not fully functional in response to glucose stimulation. Our results demonstrated that rReg3α resists STZ-induced β-cell death and promotes β-cell regeneration. rReg3α could serve as a potential drug for β-cell maintenance in anti-diabetic treatment.  相似文献   

12.
Heme oxygenase-1 (HO-1) exerts beneficial effects, including angiogenesis and energy metabolism via the peroxisome proliferator-activating receptor-γ coactivator-1α (PGC-1α)–estrogen-related receptor α (ERRα) pathway in astrocytes. However, the role of Korean red ginseng extract (KRGE) in HO-1-mediated mitochondrial function in traumatic brain injury (TBI) is not well-elucidated. We found that HO-1 was upregulated in astrocytes located in peri-injured brain regions after a TBI, following exposure to KRGE. Experiments with pharmacological inhibitors and target-specific siRNAs revealed that HO-1 levels highly correlated with increased AMP-activated protein kinase α (AMPKα) activation, which led to the PGC-1α-ERRα axis-induced increases in mitochondrial functions (detected based on expression of cytochrome c oxidase subunit 2 (MTCO2) and cytochrome c as well as O2 consumption and ATP production). Knockdown of ERRα significantly reduced the p-AMPKα/AMPKα ratio and PGC-1α expression, leading to AMPKα–PGC-1α–ERRα circuit formation. Inactivation of HO by injecting the HO inhibitor Sn(IV) protoporphyrin IX dichloride diminished the expression of p-AMPKα, PGC-1α, ERRα, MTCO2, and cytochrome c in the KRGE-administered peri-injured region of a brain subjected to TBI. These data suggest that KRGE enhanced astrocytic mitochondrial function via a HO-1-mediated AMPKα–PGC-1α–ERRα circuit and consequent oxidative phosphorylation, O2 consumption, and ATP production. This circuit may play an important role in repairing neurovascular function after TBI in the peri-injured region by stimulating astrocytic mitochondrial biogenesis.  相似文献   

13.
A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, “disease specificity” has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, “disease specific” integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather “pathology specific” nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents.  相似文献   

14.
Inflammation is important for the initiation and progression of breast cancer. We have previously reported that in monocytes, estrogen regulates TLR4/NFκB-mediated inflammation via the interaction of the Erα isoform ERα36 with GPER1. We therefore investigated whether a similar mechanism is present in breast cancer epithelial cells, and the effect of ERα36 expression on the classic 66 kD ERα isoform (ERα66) functions. We report that estrogen inhibits LPS-induced NFκB activity and the expression of downstream molecules TNFα and IL-6. In the absence of ERα66, ERα36 and GPER1 are both indispensable for this effect. In the presence of ERα66, ERα36 or GPER1 knock-down partially inhibits NFκB-mediated inflammation. In both cases, ERα36 overexpression enhances the inhibitory effect of estrogen on inflammation. We also verify that ERα36 and GPER1 physically interact, especially after LPS treatment, and that GPER1 interacts directly with NFκB. When both ERα66 and ERα36 are expressed, the latter acts as an inhibitor of ERα66 via its binding to estrogen response elements. We also report that the activation of ERα36 leads to the inhibition of breast cancer cell proliferation. Our data support that ERα36 is an inhibitory estrogen receptor that, in collaboration with GPER1, inhibits NFκB-mediated inflammation and ERα66 actions in breast cancer cells.  相似文献   

15.
Elevated levels of Mucin-16 (MUC16) in conjunction with a high expression of truncated O-glycans is implicated in playing crucial roles in the malignancy of pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms by which such aberrant glycoforms present on MUC16 itself promote an increased disease burden in PDAC are yet to be elucidated. This study demonstrates that the CRISPR/Cas9-mediated genetic deletion of MUC16 in PDAC cells decreases tumor cell migration. We found that MUC16 enhances tumor malignancy by activating the integrin-linked kinase and focal adhesion kinase (ILK/FAK)-signaling axis. These findings are especially noteworthy in truncated O-glycan (Tn and STn antigen)-expressing PDAC cells. Activation of these oncogenic-signaling pathways resulted in part from interactions between MUC16 and integrin complexes (α4β1), which showed a stronger association with aberrant glycoforms of MUC16. Using a monoclonal antibody to functionally hinder MUC16 significantly reduced the migratory cascades in our model. Together, these findings suggest that truncated O-glycan containing MUC16 exacerbates malignancy in PDAC by activating FAK signaling through specific interactions with α4 and β1 integrin complexes on cancer cell membranes. Targeting these aberrant glycoforms of MUC16 can aid in the development of a novel platform to study and treat metastatic pancreatic cancer.  相似文献   

16.
β-apopicropodophyllin (APP), a derivative of podophyllotoxin (PPT), has been identified as a potential anti-cancer drug. This study tested whether APP acts as an anti-cancer drug and can sensitize colorectal cancer (CRC) cells to radiation treatment. APP exerted an anti-cancer effect against the CRC cell lines HCT116, DLD-1, SW480, and COLO320DM, with IC50 values of 7.88 nM, 8.22 nM, 9.84 nM, and 7.757 nM, respectively, for the induction of DNA damage. Clonogenic and cell counting assays indicated that the combined treatment of APP and γ-ionizing radiation (IR) showed greater retardation of cell growth than either treatment alone, suggesting that APP sensitized CRC cells to IR. Annexin V–propidium iodide (PI) assays and immunoblot analysis showed that the combined treatment of APP and IR increased apoptosis in CRC cells compared with either APP or IR alone. Results obtained from the xenograft experiments also indicated that the combination of APP and IR enhanced apoptosis in the in vivo animal model. Apoptosis induction by the combined treatment of APP and IR resulted from reactive oxygen species (ROS). Inhibition of ROS by N-acetylcysteine (NAC) restored cell viability and decreased the induction of apoptosis by APP and IR in CRC cells. Taken together, these results indicate that a combined treatment of APP and IR might promote apoptosis by inducing ROS in CRC cells.  相似文献   

17.
The rapid growth and division of cancer cells are associated with mitochondrial biogenesis or switching to glycolysis. ERRα, PGC-1α and irisin/FNDC5 are some of the proteins that can influence these processes. The aim of this study was to determine the correlation of these proteins in non-small cell lung cancer (NSCLC) and to investigate their association with clinicopathological parameters. Immunohistochemistry reactions were performed on tissue microarrays (860 NSCLC, 140 non-malignant lung tissue). The normal fibroblast cell line (IMR-90) and lung cancer cell lines (NCI-H1703 and NCI-H522) were used as co-cultures. The mRNA levels of FNDC5 and ESRRA (encoding ERRα) were assessed in IMR-90 cells after co-culture with lung cancer cells. We observed a decreased level of ERRα with an increase in tumor size (T), stages of the disease, and lymph node metastases (N). In the adenocarcinoma (AC) subtype, patients with a higher ERRα expression had significantly longer overall survival. A moderate positive correlation was observed between FNDC5 mRNA and ESRRA mRNA in NSCLCs. The expression of FNDC5 mRNA in IMR-90 cells increased after 24 h, and ESRRA gene expression increased after 48 h of co-culture. The ERRα receptor with PGC-1α participates in the control of FNDC5/irisin expression. Normal fibroblasts revealed an upregulation of the FNDC5 and ESRRA genes under the influence of lung cancer cells.  相似文献   

18.
The α2δ auxiliary subunits of voltage-gated calcium channels (VGCC) were traditionally regarded as modulators of biophysical channel properties. In recent years, channel-independent functions of these subunits, such as involvement in synapse formation, have been identified. In the central nervous system, α2δ isoforms 1, 2, and 3 are strongly expressed, regulating glutamatergic synapse formation by a presynaptic mechanism. Although the α2δ-4 isoform is predominantly found in the retina with very little expression in the brain, it was recently linked to brain functions. In contrast, Cachd1, a novel α2δ-like protein, shows strong expression in brain, but its function in neurons is not yet known. Therefore, we aimed to investigate the presynaptic functions of α2δ-4 and Cachd1 by expressing individual proteins in cultured hippocampal neurons. Both α2δ-4 and Cachd1 are expressed in the presynaptic membrane and could rescue a severe synaptic defect present in triple knockout/knockdown neurons that lacked the α2δ-1-3 isoforms (α2δ TKO/KD). This observation suggests that presynaptic localization and the regulation of synapse formation in glutamatergic neurons is a general feature of α2δ proteins. In contrast to this redundant presynaptic function, α2δ-4 and Cachd1 differentially regulate the abundance of presynaptic calcium channels and the amplitude of presynaptic calcium transients. These functional differences may be caused by subtle isoform-specific differences in α12δ protein–protein interactions, as revealed by structural homology modelling. Taken together, our study identifies both α2δ-4 and Cachd1 as presynaptic regulators of synapse formation, differentiation, and calcium channel functions that can at least partially compensate for the loss of α2δ-1-3. Moreover, we show that regulating glutamatergic synapse formation and differentiation is a critical and surprisingly redundant function of α2δ and Cachd1.  相似文献   

19.
20.
In comparing two human lung cancer cells, we previously found lower levels of acetylcholinesterase (AChE) and intact amyloid-β40/42 (Aβ), and higher levels of mature brain-derived neurotrophic factor (mBDNF) in the media of H1299 cells as compared to A549 cell media. In this study, we hypothesized that the levels of soluble amyloid precursor protein α (sAPPα) are regulated by AChE and mBDNF in A549 and H1299 cell media. The levels of sAPPα were higher in the media of H1299 cells. Knockdown of AChE led to increased sAPPα and mBDNF levels and correlated with decreased levels of intact Aβ40/42 in A549 cell media. AChE and mBDNF had opposite effects on the levels of Aβ and sAPPα and were found to operate through a mechanism involving α-secretase activity. Treatment with AChE decreased sAPPα levels and simultaneously increased the levels of intact Aβ40/42 suggesting a role of the protein in shifting APP processing away from the non-amyloidogenic pathway and toward the amyloidogenic pathway, whereas treatment with mBDNF led to opposite effects on those levels. We also show that the levels of sAPPα are regulated by protein kinase C (PKC), extracellular signal-regulated kinase (ERK)1/2, phosphoinositide 3 Kinase (PI3K), but not by protein kinase A (PKA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号