首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
生产过程的变负荷运行使得其非线性动态特性的影响凸显。针对变负荷生产过程中机理模型为常微分方程或半显式Heisenberg微分-代数方程的一类非线性动态系统,采用非线性预测控制算法,构造出稳态优化与动态优化的两层控制结构,并采用联立法进行优化数值求解。最后对化工过程的夹套CSTR进行仿真验证,表明该算法的有效性。  相似文献   

2.
Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing with nonlinear, multivariable and/or hard-constrained plants.Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable.The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization.A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state estimation based on the measured outputs is proposed.As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing the performance of both the nonlinear observer and the control strategy.  相似文献   

3.
The need for load flexibility and increased efficiency of energy-intensive processes has become more and more important in recent years. Control of the process variables plays a decisive role in maximizing the efficiency of a plant. The widely used control models of linear model predictive controllers (LMPC) are only partly suitable for nonlinear processes. One possibility for improvement is machine learning. In this work, one approach for a purely data-driven controller based on reinforcement learning is explored at an air separation plant (ASU) in productive use. The approach combines the model predictive controller with a data-generated nonlinear control model. The resulting controller and its control performance are examined in more detail on an ASU in real operation and compared with the previous LMPC solution. During the tests, stable behavior of the new control concept could be observed for several weeks in productive operation.  相似文献   

4.
Nonlinear model predictive control (NMPC) is an appealing control technique for improving the per- formance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computation. To facilitate the implementation of NMPC in batch processes, we propose a real-time updated model predictive control method based on state estimation. The method includes two strategies: a multiple model building strategy and a real-time model updated strategy. The multiple model building strategy is to produce a series of sim- plified models to reduce the on-line computational complexity of NMPC. The real-time model updated strategy is to update the simplified models to keep the accuracy of the models describing dynamic process behavior. The method is validated with a typical batch reactor. Simulation studies show that the new method is efficient and robust with respect to model mismatch and changes in process parameters.  相似文献   

5.
This article focuses on the design of model predictive control (MPC) systems for nonlinear processes that utilize an ensemble of recurrent neural network (RNN) models to predict nonlinear dynamics. Specifically, RNN models are initially developed based on a data set generated from extensive open-loop simulations within a desired process operation region to capture process dynamics with a sufficiently small modeling error between the RNN model and the actual nonlinear process model. Subsequently, Lyapunov-based MPC (LMPC) that utilizes RNN models as the prediction model is developed to achieve closed-loop state boundedness and convergence to the origin. Additionally, machine learning ensemble regression modeling tools are employed in the formulation of LMPC to improve prediction accuracy of RNN models and overall closed-loop performance while parallel computing is utilized to reduce computation time. Computational implementation of the method and application to a chemical reactor example is discussed in the second article of this series.  相似文献   

6.
In the pursuit of integrated scheduling and control frameworks for chemical processes, it is important to develop accurate integrated models and computational strategies such that optimal decisions can be made in a dynamic environment. In this study, a recently developed switched system formulation that integrates scheduling and control decisions is extended to closed-loop operation embedded with nonlinear model predictive control (NMPC). The resulting framework is a nested online scheduling and control loop that allows to obtain fast and accurate solutions as no model reduction is needed and no integer variables are involved in the formulations. In the outer loop, the integrated model is solved to calculate an optimal product switching sequence such that the process economics is optimized, whereas in the inner loop, an NMPC implements the scheduling decisions. The proposed scheme was tested on two multi-product continuous systems. Unexpected large disturbances and rush orders were handled effectively.  相似文献   

7.
An event‐driven approach based on dynamic optimization and nonlinear model predictive control (NMPC) is investigated together with inline Raman spectroscopy for process monitoring and control. The benefits and challenges in polymerization and morphology monitoring are presented, and an overview of the used mechanistic models and the details of the dynamic optimization and NMPC approach to achieve the relevant process objectives are provided. Finally, the implementation of the approach is discussed, and results from experiments in lab and pilot‐plant reactors are presented.  相似文献   

8.
固体氧化物燃料电池(SOFC)发电系统运行除了电堆本体外还需要包含诸多其他辅助组件以期获得系统输出的最大效率,为了使SOFC电堆能够对纯氢以外的燃料具有更好的适用性,加入了燃料内部重整装置和燃烧室两个重要辅助组件。文中在对系统展开建模的基础上提出了采用非线性模型预测控制策略,能够更有效地使输出燃料气体的组分、温度、压力、浓度和流率满足燃料电池堆正常运行的需要,通过仿真分别论证了线性模型预测控制和非线性模型预测控制两种不同控制方案的有效性和适用性。  相似文献   

9.
In this work, a Weiner-type nonlinear black box model was developed for capturing dynamics of open loop stable MIMO nonlinear systems with deterministic inputs. The linear dynamic component of the model was parameterized using orthogonal Laguerre filters while the nonlinear state output map was constructed either using quadratic polynomial functions or artificial neural networks. The properties of the resulting model, such as open loop stability and steady-state behavior, are discussed in detail. The identified Weiner-Laguerre model was further used to formulate a nonlinear model predictive control (NMPC) scheme. The efficacy of the proposed modeling and control scheme was demonstrated using two benchmark control problems: (a) a simulation study involving control of a continuously operated fermenter at its optimum (singular) operating point and (b) experimental verification involving control of pH at the critical point of a neutralization process. It was observed that the proposed Weiner-Laguerre model is able to capture both the dynamic and steady-state characteristics of the continuous fermenter as well as the neutralization process reasonably accurately over wide operating ranges. The proposed NMPC scheme achieved a smooth transition from a suboptimal operating point to the optimum (singular) operating point of the fermenter without causing large variation in manipulated inputs. The proposed NMPC scheme was also found to be robust in the face of moderate perturbation in the unmeasured disturbances. In the case of experimental verification using the neutralization process, the proposed control scheme was found to achieve much faster transition to a set point close to the critical point when compared to a conventional gain-scheduled PID controller.  相似文献   

10.
In this work, a Weiner-type nonlinear black box model was developed for capturing dynamics of open loop stable MIMO nonlinear systems with deterministic inputs. The linear dynamic component of the model was parameterized using orthogonal Laguerre filters while the nonlinear state output map was constructed either using quadratic polynomial functions or artificial neural networks. The properties of the resulting model, such as open loop stability and steady-state behavior, are discussed in detail. The identified Weiner-Laguerre model was further used to formulate a nonlinear model predictive control (NMPC) scheme. The efficacy of the proposed modeling and control scheme was demonstrated using two benchmark control problems: (a) a simulation study involving control of a continuously operated fermenter at its optimum (singular) operating point and (b) experimental verification involving control of pH at the critical point of a neutralization process. It was observed that the proposed Weiner-Laguerre model is able to capture both the dynamic and steady-state characteristics of the continuous fermenter as well as the neutralization process reasonably accurately over wide operating ranges. The proposed NMPC scheme achieved a smooth transition from a suboptimal operating point to the optimum (singular) operating point of the fermenter without causing large variation in manipulated inputs. The proposed NMPC scheme was also found to be robust in the face of moderate perturbation in the unmeasured disturbances. In the case of experimental verification using the neutralization process, the proposed control scheme was found to achieve much faster transition to a set point close to the critical point when compared to a conventional gain-scheduled PID controller.  相似文献   

11.
In this work, a fast nonlinear model‐based predictive control (NMPC) strategy is designed and experimentally validated on‐line on a real fuel cell. Regarding NMPC strategies, the most challenging part remains to achieve on‐line implementation, especially when dealing with fast dynamic systems. As previously demonstrated in a recent work, the proposed control strategy is ideally suited to address this problem. Indeed, it is 30 times faster than classical NMPC controllers. This strategy relies on a specific parameterization of the control actions to reduce the computational time and achieve on‐line implementation. Due to its short computational time compared to mechanistic models, an artificial neural network model is designed and experimentally validated. This model is employed as internal model in the NMPC controller to predict the system behavior. To confirm the applicability and the relevance of the proposed NMPC controller varying control scenarios are investigated on a test bench. The built‐in controller is overridden and the NMPC controller is implemented externally and executed on‐line. Experimental results exhibit the outstanding tracking capability and robustness against model‐process mismatch of the proposed strategy. The parameterized NMPC controller turns out to be an excellent candidate for on‐line applications.  相似文献   

12.
In this paper an efficient algorithm to train general differential recurrent neural network (DRNN) is developed. The trained network can be directly used in the nonlinear model predictive control (NMPC) context. The neural network is represented in a general nonlinear state-space form and used to predict the future dynamic behavior of the nonlinear process in real time. In the new training algorithms, the ODEs of the model and the dynamic sensitivity are solved simultaneously using Taylor series expansion and automatic differentiation (AD) techniques. The same approach is also used to solve the online optimization problem in the predictive controller. The efficiency and effectiveness of the DRNN training algorithm and the NMPC approach are demonstrated through a two-CSTR case study. A good model fitting for the nonlinear plant at different sampling rates is obtained using the new method. A comparison with other approaches shows that the new algorithm can considerably reduce network training time and improve solution accuracy. The DRNN based NMPC approach results in good control performance under different operating conditions.  相似文献   

13.
NONLINEAR MODEL PREDICTIVE CONTROL   总被引:3,自引:0,他引:3  
Nonlinear Model Predictive Control (NMPC), a strategy for constrained, feedback control of nonlinear processes, has been developed. The algorithm uses a simultaneous solution and optimization approach to determine the open-loop optimal manipulated variable trajectory at each sampling instant. Feedback is incorporated via an estimator, which uses process measurements to infer unmeasured state and disturbance values. These are used by the controller to determine the future optimal control policy. This scheme can be used to control processes described by different kinds of models, such as nonlinear ordinary differential/algebraic equations, partial differential/algebraic equations, integra-differential equations and delay equations. The advantages of the proposed NMPC scheme are demonstrated with the start-up of a non-isothermal, non-adiabatic CSTR with an irreversible, first-order reaction. The set-point corresponds to an open-loop unstable steady state. Comparisons have been made with controllers designed using (1) nonlinear variable transformations, (2) a linear controller tuned using the internal model control approach, and (3) open-loop optimal control. NMPC was able to bring the controlled variable to its set-point quickly and smoothly from a wide variety of initial conditions. Unlike the other controllers, NMPC dealt with constraints in an explicit manner without any degradation in the quality of control. NMPC also demonstrated superior performance in the presence of a moderate amount of error in the model parameters, and the process was brought to its set-point without steady-state offset.  相似文献   

14.
Dividing wall columns (DWCs) are practical, effective, and promising among distillation process intensification technologies. Nonlinear model predictive control (NMPC) schemes are developed in this study to control the three-product DWCs. As these systems are intensely interactive and highly nonlinear, NMPC may be more suitable than the traditional PI control. The model is established based on Python and Pyomo platforms. As the original mathematical model of the column section is ill-posed, index reduction is used to avoid a high-index differential-algebraic equation (DAE) system. The well-posed index-1 system after index reduction is employed for the steady-state simulation and dynamic control in this study. Case studies with three DWC configurations to separate the mixture of ethanol (A), n-propanol (B), and n-butanol (C) show that the NMPC performs very well with small maximum deviations and short settling times. This demonstrates that the NMPC is a feasible and very effective scheme to control three-product DWCs.  相似文献   

15.
In this work, we present a general nonlinear model predictive control (NMPC) framework for low-density polyethylene (LDPE) tubular reactors. The framework is based on a first-principles dynamic model able to capture complex phenomena arising in these units. We first demonstrate the potential of using NMPC to simultaneously regulate and optimize the process economics in the presence of persistent disturbances such as fouling. We then couple the NMPC controller with a compatible moving horizon estimator (MHE) to provide output feedback. Finally, we discuss computational limitations arising in this framework and make use of recently proposed advanced-step MHE and NMPC strategies to provide nearly instantaneous feedback.  相似文献   

16.
In this work, we propose the integration of Koopman operator methodology with Lyapunov-based model predictive control (LMPC) for stabilization of nonlinear systems. The Koopman operator enables global linear representations of nonlinear dynamical systems. The basic idea is to transform the nonlinear dynamics into a higher dimensional space using a set of observable functions whose evolution is governed by the linear but infinite dimensional Koopman operator. In practice, it is numerically approximated and therefore the tightness of these linear representations cannot be guaranteed which may lead to unstable closed-loop designs. To address this issue, we integrate the Koopman linear predictors in an LMPC framework which guarantees controller feasibility and closed-loop stability. Moreover, the proposed design results in a standard convex optimization problem which is computationally attractive compared to a nonconvex problem encountered when the original nonlinear model is used. We illustrate the application of this methodology on a chemical process example.  相似文献   

17.
An overview of non‐linear model predictive control (NMPC) is presented, with an extreme bias towards the author's experiences and published results. Challenges include multiple solutions (from non‐convex optimization problems), and divergence of the model and plant outputs when the constant additive output disturbance (the approach of dynamic matrix control, DMC) is used. Experiences with the use of fundamental models, multiple linear models (MMPC), and neural networks are reviewed. Ongoing work in unmeasured disturbance estimation, prediction and rejection is also discussed.  相似文献   

18.
APPLICATION OF FUZZY ADAPTIVE CONTROLLER IN NONLINEAR PROCESS CONTROL   总被引:1,自引:0,他引:1  
In general, physical processes are usually nonlinear and control system design based on the linearization technique cannot control the process well for a wide range of operation. Use of the variable transformation method may not always solve the problem. In this paper, a fuzzy adaptive controller is proposed to control the nonlinear process. The CSTR control problem has also been considered. The results are compared with the method of nonlinear model predictive control (NMPC) with constrained and unconstrained control variables. A fuzzy model-following control system scheme is also proposed. The results show that the proposed controller is a feasible control structure for a nonlinear or parameter-variations process control.  相似文献   

19.
The focus of this work is on economic model predictive control (EMPC) that utilizes well‐conditioned polynomial nonlinear state‐space (PNLSS) models for processes with nonlinear dynamics. Specifically, the article initially addresses the development of a nonlinear system identification technique for a broad class of nonlinear processes which leads to the construction of PNLSS dynamic models which are well‐conditioned over a broad region of process operation in the sense that they can be correctly integrated in real‐time using explicit numerical integration methods via time steps that are significantly larger than the ones required by nonlinear state‐space models identified via existing techniques. Working within the framework of PNLSS models, additional constraints are imposed in the identification procedure to ensure well‐conditioning of the identified nonlinear dynamic models. This development is key because it enables the design of Lyapunov‐based EMPC (LEMPC) systems for nonlinear processes using the well‐conditioned nonlinear models that can be readily implemented in real‐time as the computational burden required to compute the control actions within the process sampling period is reduced. A stability analysis for this LEMPC design is provided that guarantees closed‐loop stability of a process under certain conditions when an LEMPC based on a nonlinear empirical model is used. Finally, a classical chemical reactor example demonstrates both the system identification and LEMPC design techniques, and the significant advantages in terms of computation time reduction in LEMPC calculations when using the nonlinear empirical model. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3353–3373, 2015  相似文献   

20.
This work considers distributed predictive control of large‐scale nonlinear systems with neighbor‐to‐neighbor communication. It fulfills the gap between the existing centralized Lyapunov‐based model predictive control (LMPC) and the cooperative distributed LMPC and provides a balanced solution in terms of implementation complexity and achievable performance. This work focuses on a class of nonlinear systems with subsystems interacting with each other via their states. For each subsystem, an LMPC is designed based on the subsystem model and the LMPC only communicates with its neighbors. At a sampling time, a subsystem LMPC optimizes its future control input trajectory assuming that the states of its upstream neighbors remain the same as (or close to) their predicted state trajectories obtained at the previous sampling time. Both noniterative and iterative implementation algorithms are considered. The performance of the proposed designs is illustrated via a chemical process example. © 2014 American Institute of Chemical Engineers AIChE J 60: 4124–4133, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号